CATALOGUE

Power Workholding

POWER WORKHOLDING

Elements and Systems for Power Workholding

Technical Information

Bore Clamps

Position Flexible Clamping Elements

Clamps and Clamping Cylinders

B 1.372

Low-block clamping cylinders max. 500 bar

B 1.480

Hydraulic threaded-body clamping modules max. 500 bar

B 1.730

Clamping and supporting elements

max. 300 bar

B 1.7441

Hollow cylinders max. 500 bar

B 1.8231

Flat clamps max. 500 bar

B 1.8233

Block clamps max. 70/100 bar

B 1.8242

Slide pivot clamp max. 350 bar

Hinge Clamps, Mini Hinge Clamps, Compact Clamps and Flat Lever Clamps

B 1.825

Hinge clamps 200 bar

B 1.8251 Hinge clamps

250 bar

Mini hinge clamps 250 bar

B 1.8262

Mini hinge clamps 70 bar

Hinge clamps 70 bar

Compact clamps cartridge type

B 1.8271

Mini compact clamps

B 1.828

Compact clamps flange design

B 1.829

Flat Lever Clamps cartridge type

B 1.8291

Flat Lever Clamps built-in and block-type

Electric Swing Clamps

parallel drive

Hydraulic Swing Clamps

B 1.848 mini

B 1.849
bottom flange, top flange,
threaded-body type
single acting

B 1.8491bottom flange, top flange, threaded-body type double acting

B 1.8500 top flange position monitoring max. 70 bar

B 1.8510 top flange position monitoring max. 120 bar

cartridge type position monitoring max. 350 bar

B 1.853 top flange position monitoring max. 350 bar

B 1.854 top flange position monitoring max. 350 bar

top flange
with overload protection
device
max. 500 bar

B 1.8801 top flange with reinforced swing mechanism max. 500 bar

B 1.8802 pendulum eye or fork head top flange max. 500/160 bar

B 1.8803
cartridge type
with overload protection
device
max. 500 bar

B 1.8805
piston rod locking
position monitoring
max. 250 bar

B 1.8806 without swing stroke position monitoring max. 350 bar

B 1.881

bottom flange
with overload protection
device
max. 500 bar

bottom flange with reinforced swing mechanism max. 500 bar

pendulum eye or fork head bottom flange max. 500/160 bar

block-type with overload protection device max. 500 bar

B 1.891 threaded-body type with overload protection device max. 500 bar

threaded-body type with overload protection device max. 500 bar

B 1.892

threaded-body type with reinforced swing mechanism max. 500 bar

Hydraulic Work Supports

B 1.900 round body single acting max. 500 bar

B 1.910 round body single acting max. 500 bar

B 1.911 round body double acting max. 500 bar

B 1.914 round body single acting max. 500 bar

B 1.921 block-type single acting max. 500 bar

B 1.930 block-type double acting max. 550/400 bar

M30 single acting max. 500 bar

M30 single acting max. 500 bar

M30 double acting max. 500 bar

M26 single acting max. 500 bar

M40 single acting max. 500 bar

B 1.943 M30 – M60 single acting max. 500 bar

B 1.944 M30 – M60 single acting max. 500 bar

B 1.9470 M26 – M45 single acting max. 70 bar

B 1.9471 M26 – M45 double acting max. 70 bar

B 1.9472 M26 with shaft single acting max. 70 bar

B 1.9474 top flange single acting max. 70 bar

B 1.950 M45 – M90 single acting max. 500 bar

B 1.9501M45 – M90
single acting
max. 500 bar

B 1.9503 top flange single acting max. 500 bar

Centering / Positioning

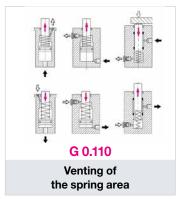
H 4.300
Concentric positioning and clamping elements

H 4.305
Concentric positioning and clamping elements

H 4.306
Concentric clamping elements

H 4.307
Parallel slide
centring element

Fixture Clamps


Pneumatic Swing Clamps



Accessories

General Characteristics of Hydraulic Equipment

Listing of characteristics	in accordance with VDI	32673284			
Terms and symbols	as per DIN ISO 1219				
Units	SI units, as per the "regu	lation regarding the law i	relating to units of measurement" dated June 26, 19	970	
Dimensions without tolerance	Deviating from this, the f	General tolerances as per DIN ISO 2768-mH Deviating from this, the following apply: cast parts, dimensional variation GTB 16 as per DIN 1686 orged pieces, forge quality F as per DIN 7526			
Dimensional drawings		, hydraulic elements are s nts in the unclamped pos	shown in off-position, i.e. without energy supply or sition.	in the	
Mounting position	Any, if not otherwise stat	ted			
Ambient temperature	$t_{u \text{ min.}} = -10 ^{\circ}\text{C}$ $t_{u \text{ max.}} = +50 ^{\circ}\text{C}$				
Relative humidity	max. 70%				
Transport, storage and opera Temperature range of fluid	Not condensing or prote $t_{m \text{ min.}} = +10^{\circ}\text{C}$ $t_{m \text{ max.}} = +60^{\circ}\text{C}$	ected against condensation	on		
Oil recommendation	Oil temperature [°C]	Hydraulic oil as pe DIN 51524-2	er Application		
	10 – 40	HLP 22	Short-time operation (poppet valves)		
	15 – 50	HLP 32	Clamping fixtures (poppet valves)		
	20 – 60	HLP 46	Industrial hydraulics (spool valves)		
	Power units and system		manuals and hydraulic circuit diagrams. other operating conditions.		
Oil filtering		of the pressure fluid classion is indicated on the co	ss 20/17/13 as per ISO 4406 orresponding data sheet		
Seals	Material	Trade name	Temperature range** Hydraulic fluid		
	NBR*	e.g. Perbunan	-30+ 80°C (100°C)*** HLP		
	(Nitrile-butadiene rubber FKM (fluoro rubber)	e.g. VITON [®]	-10+ 55°C HFA, HFB, HFC* -20+ 80°C HLP (100°C)*** HFDU**** -20+150°C	***	
	FFIXA (\ 1001 A0T® 11T1	(200°C)***		
	* Standard, unless of Generally applicable *** The temperature in with the maximum **** Highly inflammable When using these I	** Generally applicable, unless otherwise stated on the data sheet.			
Connecting thread	British standard pipe thre		h screw hole form X as per DIN 3852 sheet 2		
Fittings	form B as per DIN 3852 form E as per DIN 3852	as per DIN 2353, screwed plugs form B as per DIN 3852 sheet 2 (sealing by knife edge) or form E as per DIN 3852 page 11 (sealing by soft seal). Do not use additional sealing materials such as Teflon ribbon!			
Hydraulic cylinders,	20 Not add additional ac	a ig materiale scorr as i			
hydraulic block cylinders		1.282, B 1.590, B 1.7385	5		
Connecting dimensions	Flange mounting dimens Cylinders with stroke en	Cylinders without stroke end cushioning: Flange mounting dimensions as per DIN ISO 6020 Cylinders with stroke end cushioning:			
A.1	•	owever with the exception	n of the shorter overall length		
Adm. stroke speed	$v_{max.} = 0.50 \text{m/s}$	T I DIN 000	0.0.40		
Piston stroke	-	rd strokes as per DIN 323			
Leakage rate Pleas	to ensure the required lue note! The wiper avoids the ent When retracting the pist by the pre-stressed wipe	brication of the seals and try of dirt and liquids in th on rod, a part of the prev er lip what can cause a si orm of oil drops indicates	ne hydraulic system. viously extended oil film will be wiped off mall leakage over time. s a necessary replacement of wear parts.		

General Characteristics of Hydraulic Equipment

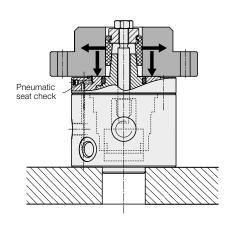
Block cylinders, clamping cylinders	0.04 /-				
Adm. stroke speed	$v_{min.} = 0.01 \text{ m/s}$ $v_{max.} = 0.25 \text{ m/s}$				
Piston stroke	relatively short stroke, correspo	nding to the usage a	as clamping cylind	der	
Stroke reserve	include at least 20% to guarante	ee safe clamping eve	en with large work	piece tolerances a	and deformations.
Spring return force	generates an oil pressure betwee The counter pressure in the return the retur			oiston position.	
Life of the spring	signed fatigue endurable for the	To obtain an overall length as short as possible of the clamping cylinder, the return springs are not designed fatigue endurable for the maximum stroke and not for vibrating charges. Fatigue endurance can be expected for a stroke utilisation of 70 to 80%.			
Piston side load	The admissible piston side load depends on the operating conditions. 3% of the nominal cylinder force must not be exceeded by no means (up to 50 mm stroke). Please contact us for the use of single-acting elements.				
Leakage rate	Block cylinders, double acting When extending the piston rod, the double sealing lets pass only a micro-oil film to ensure the required lubrication of the seals and thus a high service life.				
Operating pressure 500 bar	Clamping cylinders, single and For sealing the piston and the refilm when extending the piston as	od, sturdy high-pres			a thin residual oil
Operating pressure ≤ 200 bar		installed in order to	reduce the residu		iston rod.
Please note!	When retracting the piston rod, by the pre-stressed wiper lip what is a visible leakage in the form of of wear parts. Static under pressure, all cylinders are stressed wiper lip who have a visible leakage in the form of the control of the pressure.	a part of the previou nat can cause a sma pil drops on all cylind	usly extended oil f all leakage over tin ders indicates a ne	ne.	
Hinge clamps, swing clamps, work supports					
Wiper systems	Wiper type:	FKM	Metallic	Metallic	Special

wiper systems	wiper type:		wiper standard series	wiper edge series	wiper option	wiper on request
	Use in:					
	Hinge clamps		✓	✓		✓
	Swing clamps		✓		✓	✓
	Work supports		✓	✓		✓
	Protective effect with:					
	Cooling and cutting fluids	S	•	(●)	(•)	(●)
	Dirt, swarf		•	(●)	(●)	(●)
	Coarse and/or hot swarf		\bullet + \rightarrow	•	•	_
	Grinding swarf		•	(●)	_	(●)
	Dry machining		•	(●)	_	(●)
	Minimum quantity lubrica	ation	•	(•)	_	(•)
	Sticking particles		\bullet + \rightarrow	_	_	•
	 = required (•) = not required - = not suitable + → = in addition, a wipe 	er is req	uired			
			od wiping effect ar the most cooling a		sistance. High che	mical resistance
	6 	against In dry m accumu metallic	edged plunger or p coarse and/or hot nachining applicatic lation of very small wiper edge. y: Provide for regula	swarf. ons, with minimum I swarf, there can	n quantity lubrication be a swarf holdup	on or in case of
	1 \	against Not suit With ac	al equipment for sw coarse and/or hot table for dry machir cumulation of smal biston rod, the stan	swarf. ning or minimum o llest swarf or othe	quantity lubrication r particles that do !	<u>not</u> stick
	\	we offer	is any danger that t r other wiper solution contact us in time.		eles stick to the pis	ton rod or dry,

Clamping elements, work supports, hydraulic valves, power units and other hydraulic elements

indicated on the data sheets

Bore Clamps


double-acting, pull-type, with and without centring function, for bore diameter 16 to 46 mm, max. operating pressure from 50 up to 350 bar

Advantages

- Clamping and supporting with one element
- Compact design
- High clamping force
- Repetitive accuracy 0.005 mm
- 5 optimised clamping ranges
- Hardened support face
- Pneumatic seat check
- Easy exchange of segment clamping bushings
- Centring at the bottom of the body
- Compensating and non-centring variants are available
- Oil supply optionnally by pipe threads or drilled channels
- Standard FKM seals
- Vulcanised segment clamping bushing

Function

Application

The bore clamp is particularly suitable for centring and clamping of workpieces with smooth machined bores ranging from 16 to 46 mm in diameter and a support surface square to the hole axis.

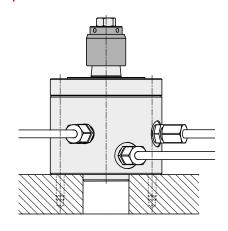
Description

The bore clamp is a combination of a double-acting pull-tpye cylinder equipped with a segment clamping bushing, which is pulled by a tie rod over a fixed cone. Thereby the segment clamping bushing expands radially to the bore diameter of the workpiece to be clamped.

By the simultaneous axial movement the workpiece is clamped onto the hardened support at the housing. The obtainable low-clamping force depends on the factor of friction within the bore and the operating pressure.

The sectioning of the complete clamping range from 16 to 46 mm in 5 sub-ranges (chart page 2) allows an optimum adaptation of tie rod, cone, workpiece support and operating pressure.

For detailed information on possible lowclamping forces and maximum operating pressures see charts and diagrams on page 2.


Important notes

Since the segment clamping bushings are operated by a tie rod, it is imperative to consider the max. operating pressure depending on the clamping range. A too high operating pressure will destroy the tie rod.

The maximum operating pressure for the segment clamping bushing is 80°C. Avoid clamping without workpiece, if possible.

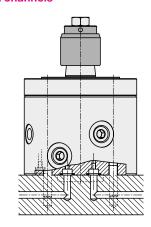
Operating conditions and other data see data sheet A 0.100.

Pipe thread

Centring function

 Bore clamp with centring Part no.: 4317 X00

Fixed centring cone


 Bore clamp with compensation Part no.: 4317 X10

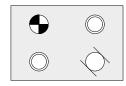
Centring cone in one axial direction ± 0.5 mm movable

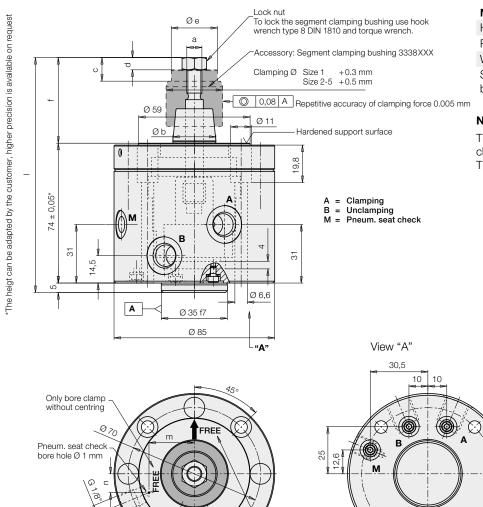
 Bore clamp without centring Part no.: 4317X20

Centring cone in all directions ± 0.5 mm movable

Drilled channels

Applications


• Centre and clamp in 1 bore hole


• Centre and clamp in 2 bore holes

 Centre and clamp in more than 2 bore holes

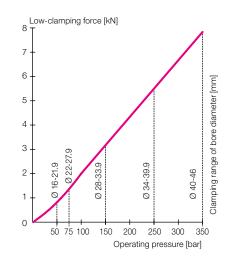
Dimensions Technical data

Size	(BG)	1	2	3	4	5
Clamping range Ø	[mm]	16-21.9	22-27.9	28-33.9	34-39.9	40-46
Low-clamping force * approx.	[kN]	0.6	1.3	3.1	5.5	7.9
Specific expanding force** approx	. [N/bar]			250		
Max. operating pressure	[bar]	50	75	150	250	350
Max. oil volume Clamping/unclamping	[cm ³]	2.45/4.02	2.45/4.02	2.45/4.02	2.45/4.02	2.45/4.02
a		M5	M6	M8	M10	M12
b	[mm]	12.8	16.8	22.8	28.8	34.8
С	[mm]	8	10	12.5	15	18
d	[mm]	4	5	6.5	8	10
е	[mm]	13.5	18.5	24.5	30.5	36.5
f	[mm]	39.5	43	45.5	54	57
I	[mm]	118.5	122	124.5	133	136
m	[mm]	15	15	24	24	24
n	[mm]	6	6	10	10	10
Tightening torque Lock nut	[Nm]	6	10	25	49	85
Max. flow rate	[cm ³ /s]	20	20	20	20	20
Weight	[kg]	2.8	2.9	3	3.1	3.2
Part no.						
with centring		4317100	4317200	4317300	4317400	4317500
with compensation		4317110	4317210	4317310	4317410	4317510
without centring		4317120	4317220	4317320	4317420	4317520

Only bore clamp with compensation in direction of arrow

- Workpiece: steel, unhardened, dry. Surface finish Rmax.3µm
- *** Friction value µ= 0.1 (steel / steel dry) between centring cone and segment clamping bushing. With lubrication, the expansion force can double!

Materials


Housing	High alloy steel
Piston	Case-hardening steel
Workpiece support	Nitriding steel
Segment clamping bushing	Tool steel

Note

The bore clamps are delivered without segment clamping bushings.

These can be ordered separately as accessory.

Low-clamping force*

Accessories Workpiece dimensions

Accessory - segment clamping bushing

For each bore hole diameter within the clamping range the appropriate segment clamping bushing has to be selected:

Part no. 3338XXX (clamping Ø in 0.1 mm) Example of ordering:

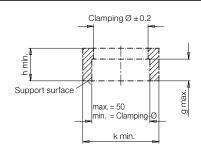
Clamping Ø: 16.0 Part no. 3338160 Clamping Ø: 34.8 Part no. 3338348

Adjustment of the segment clamping bushing

Unclamp bore clamp (extended). Unscrew lock nut of the bore clamp and screw on segment clamping bushing onto the threaded rod. Check the diameter of the segment clamping bushing by means of a vernier calliper.

The diameter of the segment clamping bushing should be adjusted to approx. 0.1 mm up to 0.2 mm less than the clamping diameter to be in the position to insert easily the workpiece to be clamped. Clamping without workpiece should be avoided due to the overexpansion of the vulcanisation.

Tightening torque for the lock nut see chart on page 2.


When tightening the lock nut to hold the segment clamping bushing without this to adjust.

Accessory for connection through drilled channels

O-ring 8x1.5	Part no. 3000343
Screw plug with collar a	nd hexagon socket
G 1/4	Part no. 3610191
G 1/8	Part no. 3610158
Alternatively,	
sealing plug	
without collar with threa	d sealing ring

G 1/4 Part no. 0361 987 G 1/8 Part no. 0361 986 Workpiece dimensions and workpiece tolerance

The workpiece to be clamped should always contact the hardened support surface and cover at least in the zone of the bore hole a minimum surface of the segment clamping bushing. This is only guaranteed, if the relevant dimensions meet the requirements shown in the drawing.

Size	(BG)	1	2	3	4	5
Clamping range Ø	[mm]	16-21.9	22-27.9	28-33.9	34-39.9	40-46
g max.	[mm]	12	12	12	15	15
h min.	[mm]	18	18	18	24	24
k min.	[mm]	35	35	55	55	55
Workpiece tolerance						
of selected clamping Ø	[mm]	-0.1+0.3	-0.1+0.5	-0.1+0.5	-0.1 +0.5	-0.1+0.5

Standard stepping 1 mm (intermediate stepping on request)

Example:

Selected clamping diameter = 16 mm Workpiece tolerance = -0.1 up to +0.3 mm Workpiece diameter = 15.9 up to 16.3 mm

Bore Clamps

Block-type, without centring function, double acting, for bore diameter 7.8-17.7 mm, max. operating pressure 250 bar

Advantages

- Axial clamping in simple bore holes
- 5-sided machining possible
- Expand clamping bushing with spring force
- Hold workpiece without hydraulic pressure
- Clamp workpiece with adjustable hydraulics
- Hardened workpiece support
- Pneumatic seat check
- Connection for positive air pressure protection
- Standard FKM seals
- 2 sizes available
- Alternatively pipe connection or manifoldmounting connection

Position workpiece

Application

The bore clamps are particularly suited for clamping of workpieces with smooth bore holes from diameter 7.8 to 17.7 mm in the support surface.

The required form-fit in the bore hole is obtained by the special profile of the hardened clamping bushings with penetrating points in the bore hole wall. Hardened materials cannot be clamped with these elements.

The workpiece is put directly onto the bore clamp and will not be deformed during clamping.

Since clamping is effected within the bore, the remaining surfaces are free for machining on 5 sides (see application example).

The size of the possible machining forces is certainly limited using this type of clamping, especially crosswise to the clamping surface.

Except the static friction force between the workpiece and the support, the bore clamp cannot compensate any side loads. Additional stops or positioning elements can help in such applica-

Workpiece sections that are subject to vibrations and deformations during machining, have to be additionally supported or clamped in a flexible (floating) position.

Functional description

See page 4.

Description

The bore clamp is a double-acting pull-type cylinder. An exchangeable clamping bushing is fixed

The four segments of the clamping bushing are radially expanded with spring force by a pyramidshaped clamping bolt. Thus the expansion force is always the same and independent of the hydraulic clamping pressure.

The workpiece is also held without hydraulics by means of the expanded clamping bushing.

Both pull-down of the workpiece and unclamping of the clamping bushing are hydraulically controlled

Connecting the positive air pressure protection, the clamping bushing is protected against swarf and coolants.

In the hardened support surface for the workpiece there is a bore hole for the pneumatic seat check.

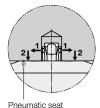
Important notes

The bore clamp has no centring function.

The clamping bushing has to be protected against too high side loads during insertion or machining by suitable stops or centring bolts. The required positioning precision is \pm 0.2 mm.

The required penetration depth of the toothing depends on the strength of the material for the form-fit toothing with the workpiece. Therefore hardened or coated workpieces cannot be used. The tapering of the bore hole should not exceed 3°. In case of doubt we recommend a clamping

Clean the support surface and blast clean the clamping bushing before every clamping cycle. If swarf fall into an open clamping bore, blast air must be continuously switched on.

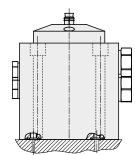

Clamping bushings and wiper should be exchanged after 100,000 operations.

Part numbers for complete clamping sets: see chart on page 3.

Operating conditions, tolerances and other data see data sheet A 0.100.

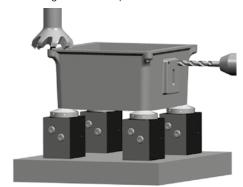
Function

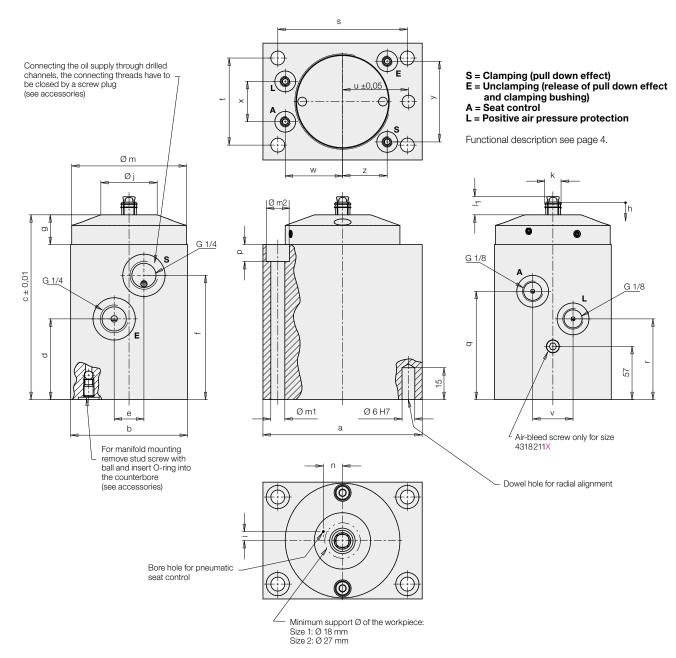
check

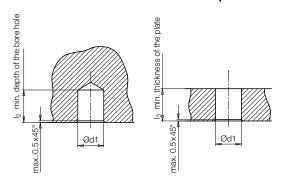


- 1 Expand clamping bushing with spring force
 Hold workpiece Safety in case of pressure drop
- 2 Clamp workpiece with hydraulics Adjustable clamping force

Connecting possibilities


Pipe thread


Drilled channels

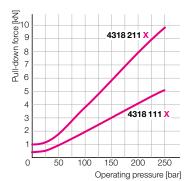

Application example

Machining of an oil sump from 5 sides

Demands on the bore hole in the workpiece

Adjusting Ø of the clamping bushing: k = d1 - 0.2 mm

Technical data


Dimensions Technical data

Technical data			Size 1	Size 2
Part no. (X = Identification letter bore &	Ø)		4318111X	4318211X
Expansion force, radial		[kN]	approx. 9	approx. 14
Pull down force	at 100 bar	[kN]	2	3.9
	at 250 bar	[kN]	5.1	9.8
Clamping bushing, unclamping		[bar]	min. 100**	min. 100**
Max. oil volume	Clamping	[cm ³]	0.5	1
	Unclamping	[cm ³]	10	25
Max. flow rate		[cm ³ /s]	25	50
a		[mm]	75	85
b		[mm]	55	63
c ±0.01		[mm]	87	111
d		[mm]	38	43
е		[mm]	14	17
f		[mm]	58.5	74.5
g		[mm]	14	16
h max. pulldown stroke		[mm]	2	2
!		[mm]	4.2	5.9
		[mm]	26.5	38.3
k Adjusting Ø of the clamping bushing	9	[mm]	d1 0.2	d1 0.2
I ₁ max. (unclamped)		[mm]	10	13
l ₂ min. depth of the bore hole		[mm]	10	13
l ₃ min. thickness of the plate		[mm]	9 54	12 63
m m1		[mm]		
m2		[mm] [mm]	6.6 (M6) 11	8.5 (M8) 15
		[mm]	9	12.7
n		[mm]	8	9
p		[mm]	51	9 77
q r		[mm]	38	77
S		[mm]	61	66
t		[mm]	41	46
U		[mm]	31	35
V		[mm]	19	23
W		[mm]	27	32
x		[mm]	19	23
У		[mm]	38	23
Z		[mm]	21	30
Weight		[kg]	2.3	3.9

Part numbers for accessories for connection through drilled channels

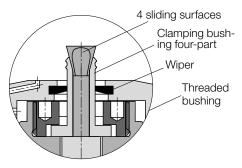
Oring	[mm]	Ø 7 x 1.5	Ø 8x1.5
NBR		3000342	3000343
FKM		3001077	3000275
Screw plug G1/4 with hexagon head		3300821	3300821
Screw plug G1/8 with hexagon head		3610047	3610047
Screw plug G1/4 with socket head cap		0361987	0361 987
Screw plug G1/8 with socket head cap		0361986	0361986

Pull-down force

- * Consider the tolerance of the bore hole
- ** For operating pressures < 100 bar please contact us.

Bore hole Ø and part numbers

Size 1 Bore Ø*	
d1 in mm	Part no.
7.8 - 8.2	4318111 A
8.3 - 9.2	4318111 B
9.3 - 9.7	4318111 C
9.8 - 10.2	4318111 D
10.3 - 11.2	4318111 E


Size 2

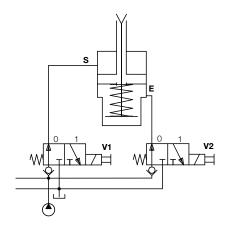
Bore Ø*	
d1 in mm	Part no.
11.3 - 11.7	4318211 F
11.8 - 12.7	4318211 G
12.8 - 13.7	4318211 H
13.8 - 14.7	4318211 K
14.8 - 15.7	4318211 L
15.8 - 16.7	4318211 M
16.8 - 17.7	4318211 N

Article available on request

Spare clamping sets

The clamping sets contain all required components to replace the clamping bushings. Every clamping set consists of clamping bushing and wiper. Mounting or dismounting can be made on your own as per operating instructions.

Size 1


Bore Ø* d1 in mm	Clamping set Part no.
7.8 - 8.2	0431704 A
8.3 - 9.2	0431704 B
9.3 - 9.7	0431704 C
9.8 - 10.2	0431704 D
10.3 - 11.2	0431704 E
Screw tool for threaded bushing	2010911

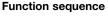
Size 2

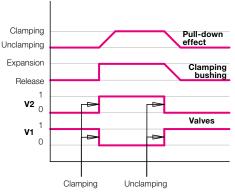
OIZC Z	
Bore Ø* d1 in mm	Clamping set Part no.
11.3 - 11.7	0431703 F
11.8 - 12.7	0431703 G
12.8 - 13.7	0431703 H
13.8 - 14.7	0431703 K
14.8 - 15.7	0431703 L
15.8 - 16.7	0431703 M
16.8 - 17.7	0431703 N
Screw tool for threaded bushing	2010912

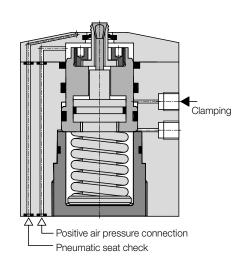
i

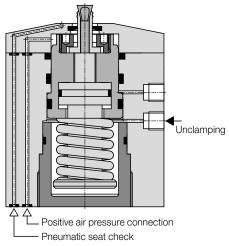
Hydraulic connection

Workpiece clamping

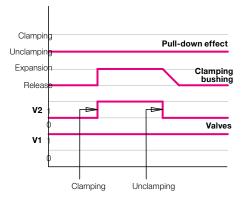

- Put the workpiece onto the hardened support surfaces and position by external stops or pins, if required.
- 2. Start the clamping process by switching the valves.
- 3. With pressure relief of the unclamping port the clamping bushings will be radially expanded very quickly. According to the material, the toothing penetrates more or less deeply into the bore hole wall and a form fit will be obtained.
- 4. In case of pressure increase at the clamping port, the hydraulic piston pulls the expanded clamping bushing and thereby also the workpiece onto the support surface.


Workpiece unclamping


- 1. For unclamping a minimum pressure of 100 bar is required. In case of pressure increase at the unclamping port, the hydraulic piston returns to its off-position and the spring tension of the clamping bushing will be released. Very light workpieces can be slightly lifted.
- 2. Remove the workpiece.


Note:

For operating pressures < 100 bar please contact us.



Clamping bushing only expansion

What happens in case of pressure drop of the clamping pressure?

In case of pressure drop the workpieces is no longer pulled onto the hardened support surface. The radial expansion of the clamping jaws and thereby the form fit with the workpiece are maintained by the spring tension.

What happens in case of pressure drop of the unclamping pressure?

The clamping bushing is expanded by spring force and can only be released with the minimum unclamping pressure of 100 bar. If there is no oil pressure the workpiece can neither be taken out nor a new workpiece can be inserted.

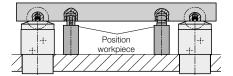
Bore Clamps

Flange type, without centring function, double acting, for bore diameter 7.8-17.7 mm, max.operating pressure 250 bar

Advantages

- Axial clamping in simple bore holes
- 5-sided machining possible
- Expand clamping bushing with spring force
- Hold workpiece without hydraulic pressure
- Clamp workpiece with adjustable hydraulics
- Hardened workpiece support
- Pneumatic seat check
- Connection for positive air pressure protection
- Standard FKM seals
- 2 sizes available

Function


 Expand clamping bushing with spring force Hold workpiece Safety in case of pressure drop

 Clamp workpiece with

Pneumatic seat check

hydraulics

Adjustable clamping force

Application

The bore clamps are particularly suited for clamping of workpieces with smooth bore holes from diameter 7.8 to 17.7 mm in the support surface.

The required form-fit in the bore hole is obtained by the special profile of the hardened clamping bushings with penetrating points in the bore hole wall. Hardened materials cannot be clamped with these elements.

The workpiece is put directly onto the bore clamp and will not be deformed during clamping.

Since clamping is effected within the bore, the remaining surfaces are free for machining on 5 sides (see application example).

The size of the possible machining forces is certainly limited using this type of clamping, especially crosswise to the clamping surface.

Except the static friction force between the workpiece and the support, the bore clamp cannot compensate any side loads. Additional stops or positioning elements can help in such applications.

Workpiece sections that are subject to vibrations and deformations during machining, have to be additionally supported or clamped in a flexible (floating) position.

Functional description

See page 4.

Description

The bore clamp is a double-acting pull-type cylinder. An exchangeable clamping bushing is fixed to the piston.

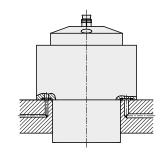
The four segments of the clamping bushing are radially expanded with spring force by a pyramid-shaped clamping bolt. Thus the expansion force is always the same and independent of the hydraulic clamping pressure.

The workpiece is also held without hydraulics by means of the expanded clamping bushing.

Both pull-down of the workpiece and unclamping of the clamping bushing are hydraulically controlled.

Connecting the positive air pressure protection, the clamping bushing is protected against swarf and coolants.

In the hardened support surface for the workpiece there is a bore hole for the pneumatic seat check.


Important notes

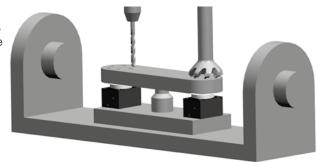
The bore clamp has no centring function.

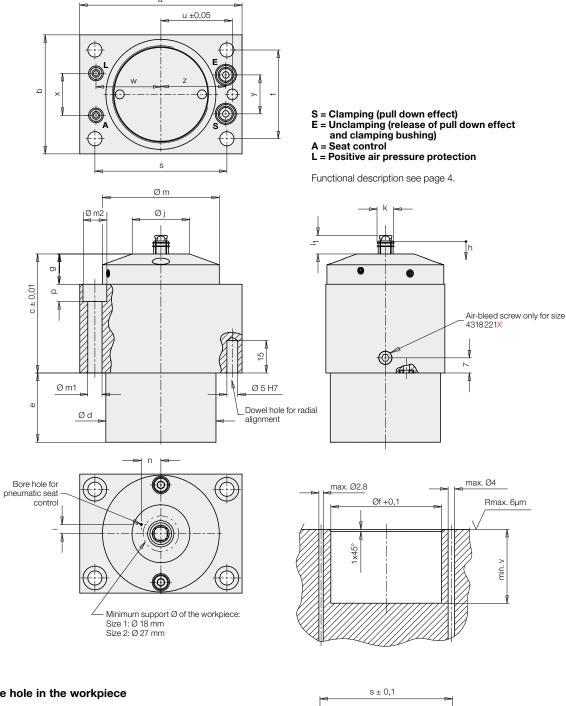
The clamping bushing has to be protected against too high side loads during insertion or machining by suitable stops or centring bolts. The required positioning precision is \pm 0.2 mm. The required penetration depth of the toothing depends on the strength of the material for the form-fit toothing with the workpiece. Therefore hardened or coated workpieces cannot be used. The tapering of the bore hole should not exceed 3°.

Connecting possibilities

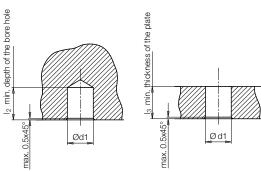
Drilled channels

In case of doubt we recommend a clamping test. Clean the support surface and blast clean the clamping bushing before every clamping cycle. If swarf fall into an open clamping bore, blast air must be continuously switched on.

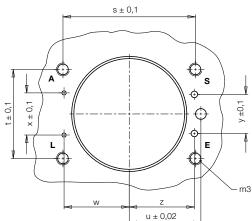

Clamping bushings and wiper should be exchanged after 100,000 operations.


Part numbers for complete clamping sets: see chart on page 3.

Operating conditions, tolerances and other data see data sheet A 0.100.


Application example

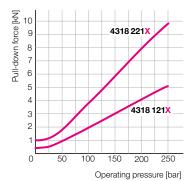
Machining of a plate from 5 sides on an indexing bridge



Demands on the bore hole in the workpiece

Adjusting \varnothing of the clamping bushing: k = d1 - 0.2 mm

Dimensions Technical data


Technical data

			Size 1	Size 2
Part no. (X = Identification letter bore	Ø)		4318121X	4318221X
Expansion force, radial		[kN]	approx. 9	approx. 14
Pull-down force	at 100 bar	[kN]	2	3.9
	at 250 bar	[kN]	5.1	9.8
Clamping bushing, unclamping		[bar]	min. 100**	min. 100**
Max. oil volume	Clamping	[cm ³]	0.5	1
	Unclamping	[cm ³]	10	25
Max. flow rate		[cm ³ /s]	25	50
a		[mm]	75	85
b		[mm]	55	63
$c \pm 0.01$		[mm]	55	61
d		[mm]	50.9	57.9
е		[mm]	32	50
f		[mm]	51	58
g		[mm]	14	16
h max. pull-down stroke		[mm]	2	2
j		[mm]	4.2	5.9
j		[mm]	26.5	38.3
k Adjusting Ø of the clamping bushin	ıg	[mm]	d1 -0.2	d1 -0.2
l ₁ max. height (unclamped)		[mm]	10	13
l ₂ min. depth of the bore hole		[mm]	10	13
l ₃ min. thickness of the plate		[mm]	9	12
m _.		[mm]	54	63
m1		[mm]	6.6	8.5
m2		[mm]	11	15
m3		[mm]	M6	M8
n		[mm]	9	12.7
p		[mm]	8	9
S		[mm]	61	66
t		[mm]	41	46
u		[mm]	33	36
V		[mm]	34	52
W		[mm]	30	32
X		[mm]	19.4	23
У		[mm]	18	24
Z Wojąkt		[mm]	30	33.5
Weight		[kg]	1.8	2.9

Part numbers for spare O-ring

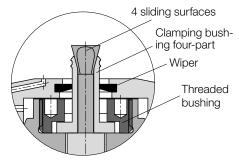
r ar thambere for opare & thig			
2 x O-ring for port A/L	[mm]	Ø 3.68 x 1.78	Ø 3.68 x 1.78
NBR		3000876	3000876
FKM		3000274	3000274
2 x O-ring for port E/S		Ø7x1.5	Ø 7 x 1.5
NBR		3000342	3000342
FKM		3001 077	3001077

Pull-down force

- * Consider the tolerance of the bore hole
- ** For operating pressures < 100 bar please contact us.

Bore hole Ø and part numbers

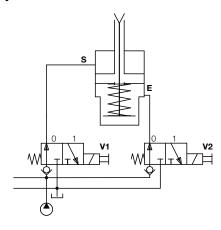
Size 1	
Bore Ø*	
d1 in mm	Part no.
7.8 - 8.2	4318121 A
8.3 - 9.2	4318121 B
9.3 - 9.7	4318121 C
9.8 - 10.2	4318121 D
10.3 - 11.2	4318121 E

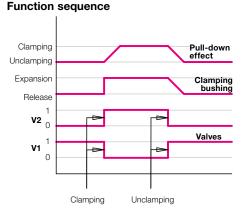

Size 2

Bore Ø* d1 in mm	Part no.
11.3 - 11.7	4318221 F
11.8 - 12.7	4318221 G
12.8 - 13.7	4318221 H
13.8 - 14.7	4318221 K
14.8 - 15.7	4318221 L
15.8 - 16.7	4318221 M
16.8 - 17.7	4318221 N

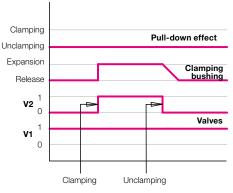
Article available on request

Spare clamping sets

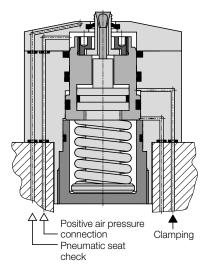

The clamping sets contain all required components to replace the clamping bushings. Every clamping set consists of clamping bushing and wiper. Mounting or dismounting can be made on your own as per operating instructions.



<mark>Size 1</mark> Bore Ø* d1 in mm	Clamping set Part no.
7.8 - 8.2	0431704 A
8.3 - 9.2	0431704 B
9.3 - 9.7	0431704 C
9.8 - 10.2	0431704 D
10.3 - 11.2	0431704 E
Screw tool for threaded bushing	2010911


Size 2 Bore Ø* d1 in mm	Clamping set Part no.
11.3 - 11.7	0431703 F
11.8 - 12.7	0431703 G
12.8 - 13.7	0431703 H
13.8 - 14.7	0431 703 K
14.8 - 15.7	0431703 L
15.8 - 16.7	0431 703 M
16.8 - 17.7	0431703 N
Screw tool for threaded bushing	2010912

Hydraulic connection

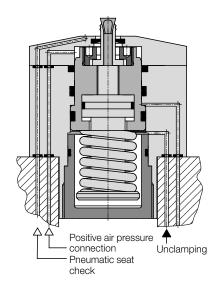


Clamping bushing only expansion

Workpiece clamping

- Put the workpiece onto the hardened support surfaces and position by external stops or pins, if required.
- Start the clamping process by switching the valves.
- 3. With pressure relief of the unclamping port the clamping bushings will be radially expanded very quickly. According to the material, the toothing penetrates more or less deeply into the bore hole wall and a form fit will be obtained.
- 4. In case of pressure increase at the clamping port, the hydraulic piston pulls the expanded clamping bushing and thereby also the workpiece onto the support surface.

What happens in case of pressure drop of the clamping pressure?


In case of pressure drop the workpieces is no longer pulled onto the hardened support surface. The radial expansion of the clamping jaws and thereby the form fit with the workpiece are maintained by the spring tension.

Workpiece unclamping

- For unclamping a minimum pressure of 100 bar is required. In case of pressure increase at the unclamping port, the hydraulic piston returns to its off-position and the spring tension of the clamping bushing will be released. Very light workpieces can be slightly lifted.
- 2. Remove the workpiece.

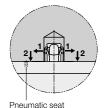
Note:

For operating pressures < 100 bar please contact us.

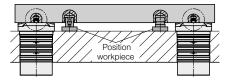
What happens in case of pressure drop of the unclamping pressure?

The clamping bushing is expanded by spring force and can only be released with the minimum unclamping pressure of 100 bar. If there is no oil pressure the workpiece can neither be taken out nor a new workpiece can be inserted.

Bore Clamps


Cartridge type, without centring function, double acting, for bore diameter 7.8-17.7 mm, max.operating pressure 250 bar

Advantages


- Axial clamping in simple bore holes
- 5-sided machining possible
- Expand clamping bushing with spring force
- Hold workpiece without hydraulic pressure
- Clamp workpiece with adjustable hydraulics
- Hardened workpiece support
- Pneumatic seat check
- Connection for positive air pressure protection
- Standard FKM seals
- 2 sizes available

Function

1 Expand clamping bushing with spring force Hold workpiece Safety in case of pressure drop

2 Clamp workpiece with hydraulics Adjustable clamping force

Application

The bore clamps are particularly suited for clamping of workpieces with smooth bore holes from diameter 7.8 to 17.7 mm in the support surface.

The required form-fit in the bore hole is obtained by the special profile of the hardened clamping bushings with penetrating points in the bore hole wall. Hardened materials cannot be clamped with these elements.

The workpiece is put directly onto the bore clamp and will not be deformed during clamping.

Since clamping is effected within the bore, the remaining surfaces are free for machining on 5 sides (see application example).

The size of the possible machining forces is certainly limited using this type of clamping, especially crosswise to the clamping surface.

Except the static friction force between the workpiece and the support, the bore clamp cannot compensate any side loads. Additional stops or positioning elements can help in such applications

Workpiece sections that are subject to vibrations and deformations during machining, have to be additionally supported or clamped in a flexible (floating) position.

Functional description

See page 4.

Description

The bore clamp is a double-acting pull-type cylinder. An exchangeable clamping bushing is fixed to the piston.

The four segments of the clamping bushing are radially expanded with spring force by a pyramid-shaped clamping bolt. Thus the expansion force is always the same and independent of the hydraulic clamping pressure.

The workpiece is also held without hydraulics by means of the expanded clamping bushing.

Both pull-down of the workpiece and unclamping of the clamping bushing are hydraulically controlled.

Connecting the positive air pressure protection, the clamping bushing is protected against swarf and coolants.

In the hardened support surface for the workpiece there is a bore hole for the pneumatic seat check.

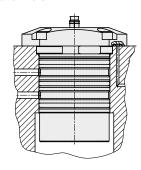
Important notes

The bore clamp has no centring function.

The clamping bushing has to be protected against too high side loads during insertion or machining by suitable stops or centring bolts. The required positioning precision is \pm 0.2 mm.

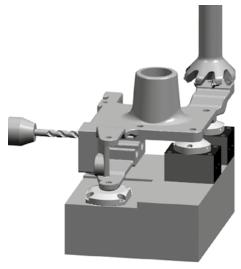
The required penetration depth of the toothing depends on the strength of the material for the form-fit toothing with the workpiece. Therefore hardened or coated workpieces cannot be used. The tapering of the bore hole should not exceed 3°. In case of doubt we recommend a clamping test.

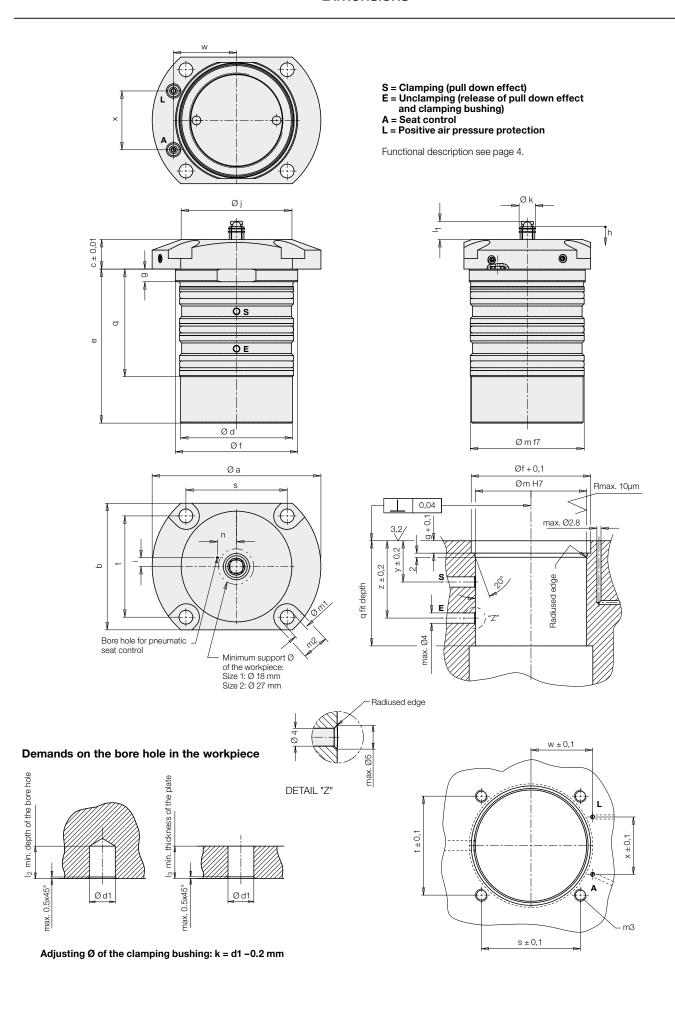
Clean the support surface and blast clean the clamping bushing before every clamping cycle. If swarf fall into an open clamping bore, blast air must be continuously switched on.


Clamping bushings and wiper should be exchanged after 100,000 operations.

Part numbers for complete clamping sets: see chart on page 3.

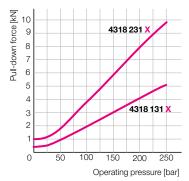
Operating conditions, tolerances and other data see data sheet A 0.100.


Connecting possibility


Drilled channels

Application example

Machining of a cast part from 5 sides


Dimensions Technical data

Technical data			Size 1	Size 2
Part no. ($X = Identification letter bore \emptyset$)		4318131X	4318231X
Expansion force, radial	,	[kN]	approx. 9	approx. 14
Pull-down force	at 100 bar	[kN]	2	3.9
	at 250 bar	[kN]	5.1	9.8
Clamping bushing, unclamping		[bar]	min. 100**	min. 100**
Max. oil volume	Clamping	[cm ³]	0.5	1
	Unclamping	[cm ³]	10	25
Max. flow rate		[cm ³ /s]	25	50
Øa		[mm]	80	90
b		[mm]	60	68
c ±0.01		[mm]	14	16
Ød		[mm]	53	59
е		[mm]	73	95
f		[mm]	58	68
g ± 0.1		[mm]	6	8
h max. pull-down stroke		[mm]	2	2
İ		[mm]	4.2	6.3
Øj		[mm]	52.5	62.5
Ø k Adjusting Ø of the clamping bushir	ng	[mm]	d1 -0.2	d1 -0.2
I ₁ max. height (unclamped)		[mm]	10	13
l ₂ min. depth of the bore hole		[mm]	10	13
l ₃ min. thickness of the plate		[mm]	9	12
Øm		[mm]	54	60
Ø m1		[mm]	6.6	6.6
m2		[mm]	12.5	12.5
m3		[mm]	M6	M6
n		[mm]	9	13.6
q		[mm]	51	59,5
S		[mm]	48	55
t		[mm]	48	55
W		[mm]	29.9	35.4
X		[mm]	27.9	33
У		[mm]	20	21
Z		[mm]	37.5	42
Weight, approx.		[kg]	1.5	2.4

Part numbers for spare O-ri	ing
-----------------------------	-----

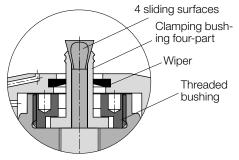
2 x O-ring	[mm]	Ø 3.68 x 1.78	Ø 3.68 x 1.78	
NBR		3000876	3000876	
FKM		3000274	3000274	

Pull-down force

- * Consider the tolerance of the bore hole
- ** For operating pressures < 100 bar please contact us.

Bore hole Ø and part numbers

Size 1


Bore Ø* d1 in mm	Part no.
7.8 - 8.2	4318131 A
8.3 - 9.2	4318131 B
9.3 - 9.7	4318131 C
9.8 - 10.2	4318131 D
10.3 - 11.2	4318131 E

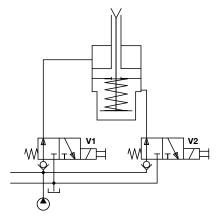
Size 2

Bore Ø*	
d1 in mm	Part no.
11.3 - 11.7	4318231 F
11.8 - 12.7	4318231 G
12.8 - 13.7	4318231 H
13.8 - 14.7	4318231 K
14.8 - 15.7	4318231 L
15.8 - 16.7	4318231 M
16.8 - 17.7	4318231 N

Spare clamping sets

The clamping sets contain all required components to replace the clamping bushings. Every clamping set consists of clamping bushing and wiper. Mounting or dismounting can be made on your own as per operating instructions.

Size 1


Bore Ø* d1 in mm	Clamping set Part no.
7.8 - 8.2	0431704 A
8.3 - 9.2	0431704 B
9.3 - 9.7	0431704 C
9.8 - 10.2	0431704 D
10.3 - 11.2	0431704 E
Screw tool	2010911
for threaded bushing	

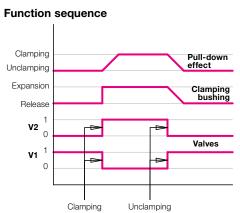
Size 2

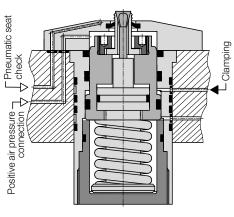
Bore Ø* d1 in mm	Clamping set Part no.
11.3 - 11.7	0431703 F
11.8 - 12.7	0431703 G
12.8 - 13.7	0431703 H
13.8 - 14.7	0431703 K
14.8 - 15.7	0431703 L
15.8 - 16.7	0431703 M
16.8 - 17.7	0431703 N
Screw tool for threaded bushing	2010912

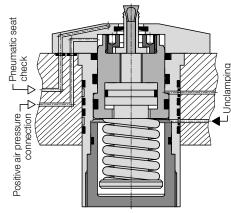
Functional description

Hydraulic connection

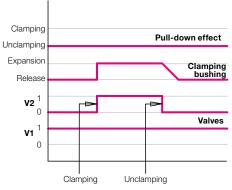
Workpiece clamping


- Put the workpiece onto the hardened support surfaces and position by external stops or pins, if required.
- Start the clamping process by switching the valves.
- 3. With pressure relief of the unclamping port the clamping bushings will be radially expanded very quickly. According to the material, the toothing penetrates more or less deeply into the bore hole wall and a form fit will be obtained.
- 4. In case of pressure increase at the clamping port, the hydraulic piston pulls the expanded clamping bushing and thereby also the workpiece onto the support surface.


Workpiece unclamping


- For unclamping a minimum pressure of 100 bar is required. In case of pressure increase at the unclamping port, the hydraulic piston returns to its off-position and the spring tension of the clamping bushing will be released. Very light workpieces can be slightly lifted.
- 2. Remove the workpiece.

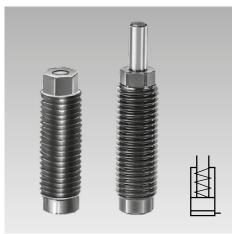
Note:


For operating pressures < 100 bar please contact us.

Clamping bushing only expansion

What happens in case of pressure drop of the clamping pressure?

In case of pressure drop the workpieces is no longer pulled onto the hardened support surface. The radial expansion of the clamping jaws and thereby the form fit with the workpiece are maintained by the spring tension.


What happens in case of pressure drop of the unclamping pressure?

The clamping bushing is expanded by spring force and can only be released with the minimum unclamping pressure of 100 bar. If there is no oil pressure the workpiece can neither be taken out nor a new workpiece can be inserted.

Threaded-Body Cylinder

single acting with spring return max. operating pressure 160/500 bar

Description

These threaded-body cylinders are particularly suitable for clamping of smaller workpieces in multiple clamping fixtures. The minimum cylinder pitch is only 15 mm.

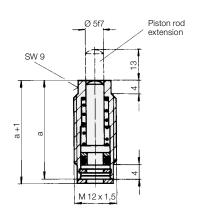
Sealing is made with the supplied sealing ring in the threaded hole.

The sealing nut, delivered as accessory, allows adjustment of the cylinders 1458002 and 1458012 so that workpiece tolerances of more than 20 mm can be compensated.

Admissible seating torque of the sealing nut 25 Nm!

Threaded in the mounting body the cylinder can also be connected individually. Depending on wall strength and fixing method (thread or bore) a certain adjustment is possible.

Material


Piston material: casehardening steel, hardened Cylinder body: free-cutting steel

Important notes

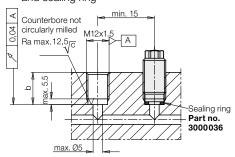
Threaded-body cylinders must not be subjected to a load in retracted position.

Cylinders have to be protected against direct influences of aggressive cutting lubricants and coolants.

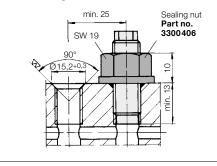
Operating conditions, tolerances and other data see data sheet A 0.100.

Dart no - with coaling	rina	1/50001	1/50000
Weight	[g]	16	24
Max. seating torque	[Nm]	10	10
С	[mm]	17	30
max.	[mm]	24	37
b min.	[mm]	11	11
a	[mm]	27	40
Spring return force, min.	[N]	15	15
Piston area	[cm ²]	0.5	0.5
Oil volume/10 mm stroke	[cm ³]	0.5	0.5
Min. operating pressure	[bar]	5	5
at 500 bar	[kN]	2.5	2.5
Clamping force 100 bar	[kN]	0.5	0.5
Stroke	[mm]	5	10
Piston Ø	[mm]	8	8

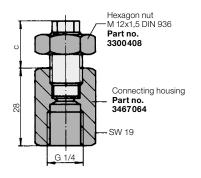
Part no. - with sealing ring
Part no. - with sealing ring
and piston rod extension
1458001 1458002
1458011 1458012

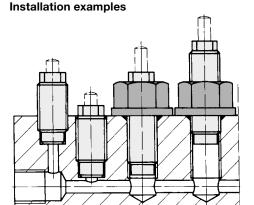

Version with minimum leakage rate for operating pressure up to 160 bar

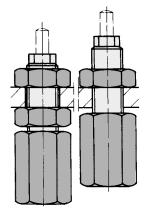
e.g. for applications with many operating cycles


Part no. - with sealing ring
Part no. - with sealing ring
and piston rod extension
1458 101
1458 102
1458 111
1458 112

Installation possibilities and accessories


 Screw-in thread and sealing ring




2. Screw-in thread and sealing nut

Connecting housing and lock nut

Bore Clamps Eccentric

Pneumatic seat check and clamping monitoring bore holes Ø 8 - 12 mm, double acting, max. operating pressure 80 and 120 bar

Application

The hydraulically-operated bore clamp is particularly suitable for clamping in workpieces with smooth bore holes in the support surface ranging from 8 to 12 mm in diameter.

The workpiece is placed directly onto the hardened supports of the bore clamp and is not deformed during clamping.

Since clamping is effected within the bore, the remaining surfaces are free for machining on 5 sides.

Description

The double-acting hydraulic cylinder operates a tie bolt that is eccentrically arranged at the edge of the housing in which the clamping bolt is safely engaged.

This conical clamping bolt expands the hardened clamping bushing so that its points penetrate the bore surface in the workpiece with a positive fit (see "Clamping principle").

Clamping bolt and clamping bushing can be exchanged very quickly after loosening the workpiece support. The bore clamp can remain on the fixture and no hydraulic oil escapes.

All functions can be monitored pneumatically. The use of the connection for positive air pressure protection prevents liquids and swarf from entering the clamping bushing.

Important notes

The bore clamp has no centring function. To insert and position the workpiece, suitable guides and centring bolts must be provided.

The centring bolts also have to absorb the occurring side loads during machining.

A distortion-free workpiece clamping is only guaranteed if the workpiece rests backlash-free on all bore clamps.

The specified clamping forces are only achieved if the points of the clamping bushing penetrate into the bore wall (see also "Clamping principle" and "Technical characteristics").

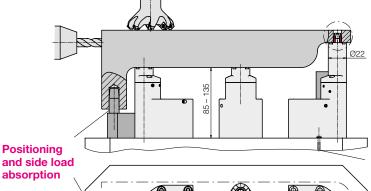
If swarf and liquids penetrate into an open clamping bore, positive air pressure must be continuously switched on.

Axial clamping in smooth bore holes

Machining from 5 sides

Reduced processing times

Higher precision by tools in standard length


Short tool paths

Pneumatic Clamping force up to 5 kN

Positive air pressure protection

Clamping bolt and clamping bushing easily exchangeable

Hardened workpiece support

seat check

Different support heights

Eccentric design with small neck diameter

2 x hydraulics 4 x pneumatics

Corrosionprotected components

Function

Smaller

machine

tables

fixtures and

Efficient swarf

management

After pressurising, the conical clamping bolt will be retracted. The clamping bushing will be expanded and the points penetrate into the bore hole wall.

igotimes igotimes igotimes

With the penetration of the points increases the hydraulic pressure and thus the clamping force.

During unclamping, the clamping bolt extends again. The clamping bushing is relieved and pulled together by a ring spring.

Function control

With bore clamps, visual control of the clamping process is not possible because they are concealed by the workpiece.

For this eccentric bore clamp, three pneumatic and one hydraulic control options are available as standard:

- Seat check
- Clamping monitoring
- Unclamping monitoring
- Operating pressure control by external pressure switches

Functional safety

The functional safety is guaranteed if

- the workpiece material allows the clamping bushing to penetrate into the bore wall (see Technical characteristics);
- the diameter of the clamping bore is within the admissible tolerance range of the clamping bushing used;
- the clamping bore in the workpiece is round and perpendicular to the support surface;
- the workpiece rests on the entire surface perpendicular to the bore clamp;
- the support surfaces are free of dirt and
- the positive air pressure connection is switched on to blow away liquids and chips.

We recommend the use of all control options so that information about the current operating status is available at all times.

A detailed description with a function chart and the hydraulic and pneumatic circuit diagram can be found on page 4.

Design with defined return of the clamping segments

On request

Clamping principle • Clamping bore • Clamping bushings • Tolerances

Clamping principle

To ensure that the workpiece is clamped onto the hardened workpiece support with the highest possible force, a positive connection must be established between the clamping bushing and the smooth bore wall.

During the clamping process, the conical clamping bolt spreads the hardened clamping bushing and the circumferential points penetrate into the softer workpiece material.

The penetration depth depends on the hardness of the material. Hardened, highly-tempered but also too soft materials are therefore not suitable (see "Technical characteristics"). In case of doubt, a clamping test should be carried out.

A closed clamping bore has the advantage that no swarf or liquids can get into the bore clamp through the clamping bushing during machin-

However, the positive air pressure connection can only be switched off if no liquid is present at the workpiece support.

With the open bore, however, the positive air pressure connection must remain permanently switched on.

Clamping bushings

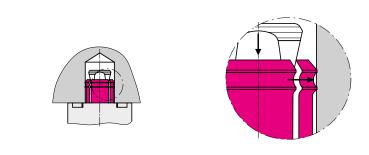
Example: clamping bore Ø 10 mm

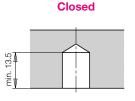
Nominal diameter of the clamping bushing 10

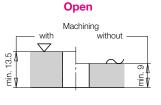
Workpiece loading and positioning

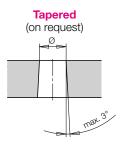
The workpiece is to be guided by insertion pins, especially during automatic loading by robots. The bore clamps have no centring function. Additional positioning pins (round and flattened) have the following functions:

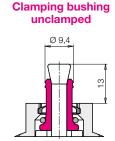
- to bring workpieces into an exact machining
- to absorb side loads if these are greater than 10% of the clamping force of the bore clamps.

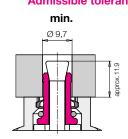

The functions "Insert" and "Position" can be combined if the centring is long enough (see example a > b).

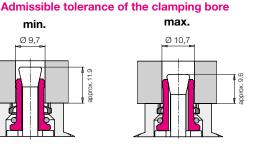

Positioning tolerance

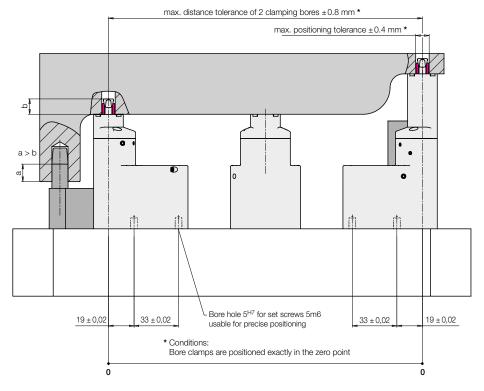

Since the clamping bushing in the housing is radially movable, the workpiece can be positioned with a positioning tolerance of ± 0.4 mm.

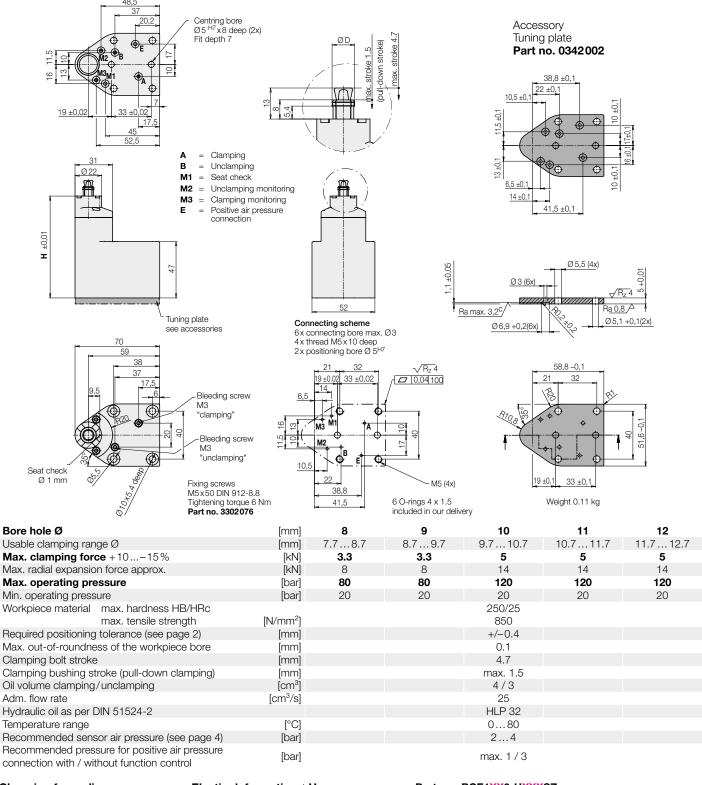

Distance tolerance

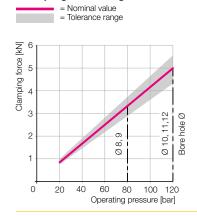

The distance tolerance of 2 clamping bores can be max. ±0.8 mm if both bore clamps are positioned at the zero point (nominal dimension). This is made possible by using the two holes 5 H7 in the flange surface of the bore clamps.

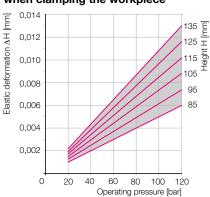











Dimensions Technical Characteristics • Accessories

Clamping force diagram

Elastic deformation ∆H when clamping the workpiece

Part no. BCE1XX0 HXXXSZ

Bore hole Ø	Height H	Elastic deformation ∆ H with load	Weight
[mm]	[mm]	[µm / kN]	[kg]
BCE1XX0	HXXXSZ		
08	085	-1.60	1.20
09	095	-1.88	1.22
10	105	-2.16	1.24
11	115	-2.44	1.26
12	125	-2.72	1.28
	135	-3.00	1.30

Other sizes on request.

Function control

Pneumatic function controls

The bore clamp clamps the workpiece within smooth bores located in the support surface. A visual control of the clamping process is therefore impossible.

Three pneumatic function checks are available for this purpose:

- Seat check M1
- Signals the backlash-free contact of the workpiece on the hardened support and is therefore a prerequisite for initiating the clamping process.
- Unclamping monitoring M2
 Signals the unclamping position of the
 clamping bolt and thus the opening of the
 clamping bushing.

Together with pressure switch P2, this is a prerequisite for unhindered loading and unloading of the workpiece.

Clamping monitoring M3

Signals that the clamping bolt is in the optimum clamping range and that the clamping bushing fits the diameter of the clamping bore.

Together with the seat check M1 and the pressure switch P1, the signal serves for processing release.

Hydraulic function controls

- Clamping pressure P1
 Signals that the set operating pressure and
 the desired clamping force are applied.
 Together with the seat check M1 and the
 clamping monitoring M3, the signal serves
 for processing release.
- Unclamping pressure P2
 Signals that the tie rod is held in unclamping position by hydraulic pressure.
 Together with the unclamping monitoring M2

this is the release for the workpiece change.

Error message in clamping state

(see chart "Examples for ...")

Possible sources of error are

- clamping bore too large
- clamping bore out of tolerance
- clamping bore tapered or non-circular
- workpiece material too hard
- workpiece material too soft
- clamping bushing worn or defective
- clamping bolt defective

Signal conversion Pneumatics → Electrics

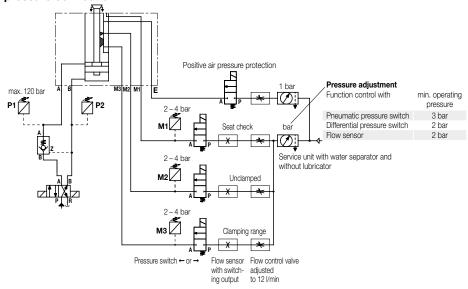
If a pneumatic bore is closed, the air pressure in the measuring system increases.

An electro-pneumatic measuring device can either measure the pressure increase or a drop of the air flow rate and convert it into an electrical signal.

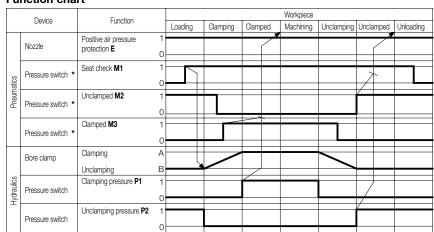
Pneumatic pressure switch

Advantage: easy adjustment

To achieve a sufficient hysteresis of 1–2 bar, the air flow rate must be limited to approx. 12 l/min with a flow control valve. This adjustment is made with an additional flow sensor with digital flow rate display.


Differential pressure switch

Differential pressure switches (e.g. PEL System) require only 0.5 to 1.5 bar working pressure. The exact adjustment of a setting nozzle under practical conditions is required.


Flow senso

A function control is also possible independent of pressure by measuring the flow rate. The flow sensor should have a digital display and one adjustable limit switch with a binary output (such as type SFAB of Festo).

Hydraulic and pneumatic circuit diagram with all function checks and positive air pressure connection

Function chart

^{*} alternatively differential pressure switch or flow sensor

Examples for switching positions when using all control elements

Control elements		Status of control elements			
			Bore clamp		
		Unclamped and workpiece does not lie flat on the surface	Clamped Processing release	Error message in clamped state	
Seat check	M1	0	1	1	
Unclamping monitoring	M2	1	0	0	
Clamping monitoring	М3	0	1	0	← Error!
Clamping pressure	P1	0	1	1	(see text)
Unclamping pressure	P2	1	0	0	

Example

Six seat checks with 2 bar air pressure:

- 1. Cover all seat checks with one workpiece and measure the flow rate Qmin.
- 2. If one seat check is not covered, measure Omax.
- 3. Enter and save

switching threshold = $0.5 \times (Qmax + Qmin)$.

If the difference (Qmax – Qmin) is too small, increase the flow rate or reduce the number of bore clamps per sensor.

Number of bore clamps at a function control

For the monitoring of a function, e.g. the seat check, a group of max. 6 bore clamps can be connected to one measuring device.

The calibration of the switching pressure requires great care, because the measuring device has to recognize that, for example, only one of the 6 seat checks is not covered. It is not possible to see which one that is!

Bore Clamps

Pneumatic seat check and clamping monitoring, bore Ø 5.5 - 13 mm double acting, max. operating pressure 30, 80 and 120 bar

Application

The hydraulically-operated bore clamp is particularly suitable for clamping in workpieces with smooth bore holes in the support surface ranging from 5.5 to 13 mm in diameter.

The workpiece is placed directly onto the hardened supports of the bore clamp and is not deformed during clamping.

Since clamping is effected within the bore, the remaining surfaces are free for machining on 5 sides.

Description

The double-acting hydraulic cylinder operates a conical clamping bolt centrally located in the housing, which expands the hardened clamping bushing. The expansion force causes the points to penetrate into the softer bore surface. This positive connection guarantees a secure clamping of the workpiece (see also "Clamping principle" on page 2).

All functions can be monitored pneumatically. The use of the connection for positive air pressure protection can prevent liquids and swarf from entering the clamping bushing.

Important notes

The bore clamp has no centring function. To insert and position the workpiece, suitable guides and centring bolts must be provided (see page 2).

The centring bolts also have to absorb the occurring side loads during machining.

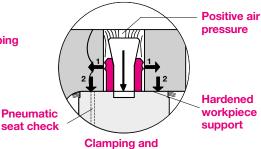
A distortion-free workpiece clamping is only guaranteed if the workpiece rests backlash-free on all bore clamps.

The specified clamping forces are only achieved if the points of the clamping bushing can penetrate into the bore wall. (see also "Technical characteristics" max. hardness).

If swarf and liquids penetrate into an open clamping bore, positive air pressure must be continuously switched on.

Axial clamping in smooth bore holes

Machining from 5 sides

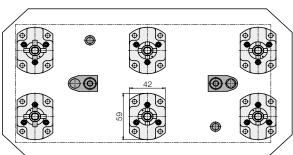

Distortion-free workpiece clamping

Higher precision by tools in standard length

Short tool paths

Reduced processing times

Clamping force up to 5 kN



Positioning and side load absorption

2 x hydraulics 4 x pneumatics (if required)

Smaller fixtures and machine tables

Efficient swarf management

Corrosionprotected components

Small neck diameter

Different

support heights

Mounting position: any

Function

After pressurising, the conical clamping bolt will be retracted. The clamping bushing will be expanded and the points penetrate into the bore hole wall.

With the penetration of the points increases the hydraulic pressure and thus the clamping force. During unclamping, the clamping bolt extends again. The clamping bushing is relieved and pulled together by a ring spring.

Functional safety

The functional safety is guaranteed if

- the points of the clamping bushing can penetrate into the bore wall (see Technical characteristics workpiece material);
- the diameter of the clamping bore is within the admissible tolerance range of the clamping bushing used;
- the clamping bore in the workpiece is round and perpendicular to the support surface;
- the workpiece rests on the entire surface perpendicular to the bore clamp;
- the support surfaces are free of dirt and swarf:
- the positive air pressure connection is switched on to blow away liquids and chips.

Function control

With bore clamps, visual control of the clamping process is not possible because they are concealed by the workpiece.

For this reason, this bore clamp has three pneumatic and one hydraulic control option as standard:

- Seat check
- Clamping monitoring
- Unclamping monitoring
- Operating pressure control by external pressure switches

We recommend the use of all control options so that information about the current operating status is available at all times.

A detailed description with a function chart and the hydraulic and pneumatic circuit diagram can be found on page 4.

Design with defined return of the clamping segments

On request

Clamping principle • Clamping bore • Clamping bushing • Tolerances

Clamping principle

To ensure that the workpiece is clamped onto the hardened workpiece support with the highest possible force, a positive connection must be established between the clamping bushing and the smooth bore wall.

During the clamping process, the conical clamping bolt spreads the hardened clamping bushing and the circumferential points penetrate into the softer workpiece material.

The penetration depth depends on the hardness of the material. Hardened, highly-tempered but also too soft materials are therefore not suitable (see "Technical characteristics"). In case of doubt, a clamping test should be carried out.

A closed clamping bore has the advantage that no swarf or liquids can get into the bore clamp through the clamping bushing during machining.

However, the positive air pressure connection can only be switched off if no liquid is present at the workpiece support.

With the open bore, however, the positive air pressure connection must remain permanently switched on.

Clamping bushings

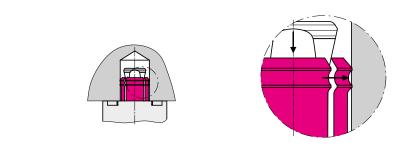
Example: Clamping bore Ø 10 mm

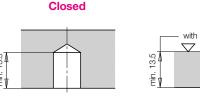
Nominal diameter of the clamping bushing 10

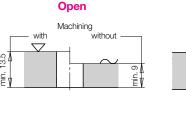
Workpiece loading and positioning

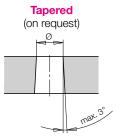
The workpiece is to be guided by insertion pins, especially during automatic loading by robots. The bore clamps have no centring function. Additional positioning pins (round and flattened) have the following functions

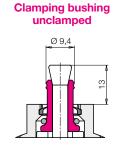
- to bring workpieces into an exact machining position;
- to absorb side loads if these are greater than 10% of the clamping force of the bore

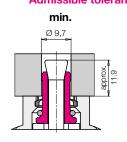

The functions "Insert" and "Position" can be combined if the centring is long enough (see example a > b).

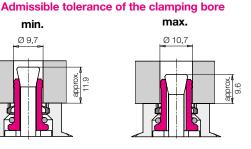

Positioning tolerance

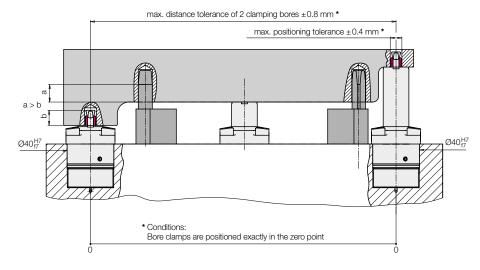

Since the clamping bushing in the housing is radially movable, the workpiece can be positioned with a positioning tolerance of ± 0.4 mm.

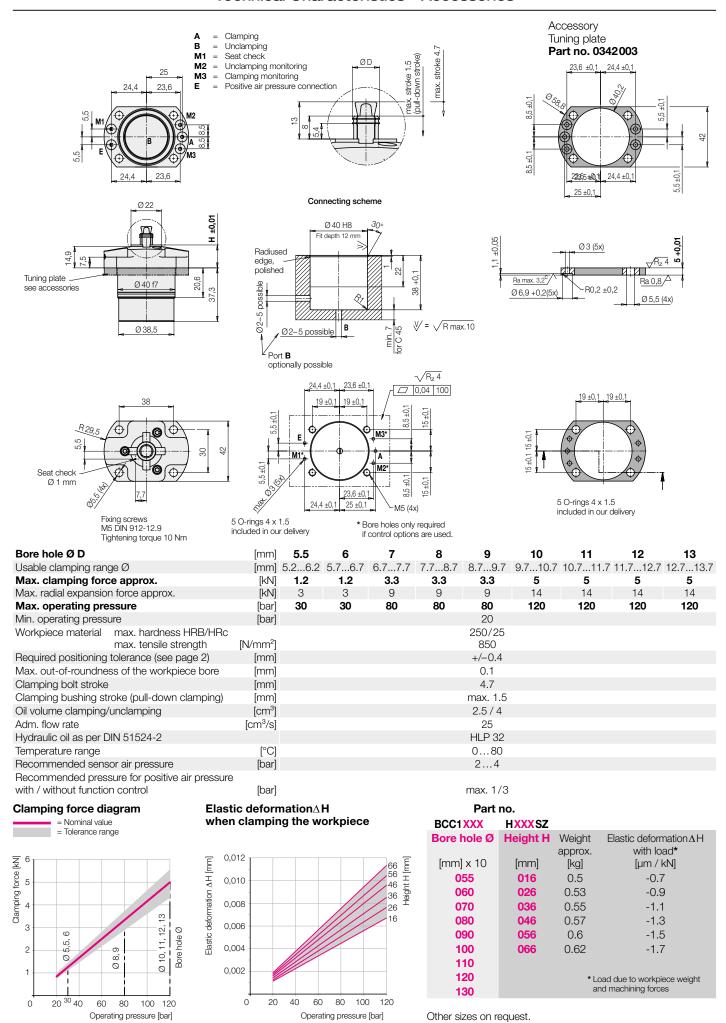

Distance tolerance


The distance tolerance of 2 clamping bores can be max. ±0.8 mm if both bore clamps are positioned at the zero point (nominal dimension).









Dimensions Technical Characteristics • Accessories

Function control

Pneumatic function controls

The bore clamp clamps the workpiece within smooth bores located in the support surface. Visual control of the clamping process is therefore impossible.

Three pneumatic function checks are available for this purpose:

Seat check M1

clamping bushing.

- Signals the backlash-free contact of the workpiece on the hardened support and is therefore a prerequisite for initiating the clamping process.
- Unclamping monitoring M2
 Signals the unclamping position of the
 clamping bolt and thus the opening of the
- Together with pressure switch P2, this is a prerequisite for unhindered loading and unloading of the workpiece.
- Clamping monitoring M3
 Signals that the clamping bolt is in the optimum clamping range and that the clamping bushing fits the diameter of the clamping bore.

Together with the seat check M1 and the pressure switch P1, the signal serves for processing release.

Hydraulic function controls

- Clamping pressure P1
 Signals that the set operating pressure and
 the desired clamping force are applied.
 Together with the seat check M1 and the
 clamping monitoring M3, the signal serves
 for processing release.
- Unclamping pressure P2
 Signals that the tie rod is held in unclamping
 position by hydraulic pressure.
- Together with the unclamping monitoring M2 this is the release for the workpiece change.

Error message in clamping state

(see chart "Example for ...")
Possible sources of error are

- Clamping bore too large
- Clamping bore out of tolerance
- Clamping bore tapered or non-circular
- Workpiece material too hard
- Workpiece material too soft
- Clamping bushing worn or defective
- Clamping bolt defective

Signal conversion Pneumatics → Electrics

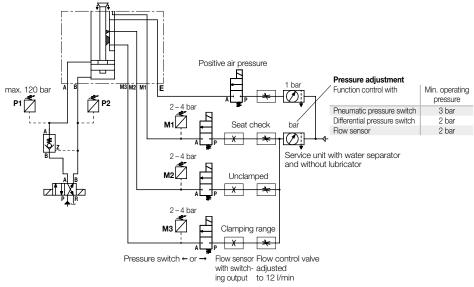
If a pneumatic bore is closed, the air pressure in the measuring system increases.

An electro-pneumatic measuring device can either measure the pressure increase or a drop of the air flow rate and convert it into an electrical signal.

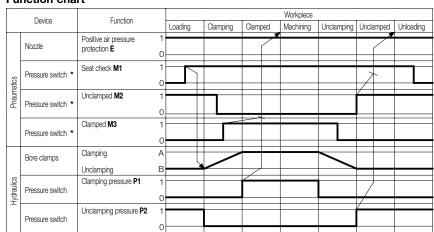
Pneumatic pressure switch

Advantage: Easy adjustment

To achieve a sufficient hysteresis of 1-2 bar, the air flow rate must be limited to approx. 12 l/min with a flow control valve. This adjustment is made with an additional flow sensor with digital flow rate display.


Differential pressure switch

Differential pressure switches (e.g. PEL System) require only 0.5 to 1.5 bar working pressure. The exact adjustment of a setting nozzle under practical conditions is required.


Flow sensor

A function control is also possible independent of pressure by measuring the flow rate. The flow sensor should have a digital display and one adjustable limit switch with a binary output (such as type SFAB of Festo).

Hydraulic and pneumatic circuit diagram with all function checks and positive air pressure connection.

Function chart

^{*} alternatively differential pressure switch or flow sensor

Examples for switching positions when using all control elements

Control elements		Status of control elements				
			Bore clamps			
		Unclamped and workpiece does not lie flat on the surface	Clamped Processing release	Error message in clamped state		
Seat check	М1	0	1	1		
Unclamping monitoring	M2	1	0	0]	
Clamping monitoring	М3	0	1	0	← Error!	
Clamping pressure	P1	0	1	1	(see text)	
Unclamping pressure	P2	1	0	0		

Example

Six seat checks with 2 bar air pressure:

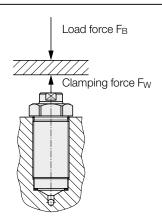
- Cover all seat checks with one workpiece and measure the flow rate Qmin.
- 2. If one seat check is not covered, measure Qmax.
- 3. Enter and save

switching threshold = $0.5 \times (Qmax + Qmin)$. If the difference (Qmax - Qmin) is too small, increase the flow rate or reduce the number of bore clamps per sensor.

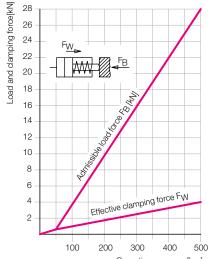
Number of bore clamps at a function control

For the monitoring of a function, e.g. the seat check, a group of max. 6 bore clamps can be connected to one measuring device.

The calibration of the switching pressure requires great care, because the measuring device has to recognize that, for example, only one of the 6 seat checks is not covered. It is not possible to see which one that is!

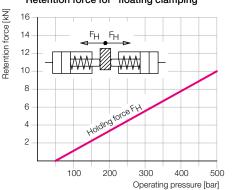

Threaded-Body Cylinders with Locking Piston

single acting with spring return, max. operating pressure 500 bar

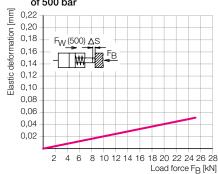


Advantages

- "Clamping" and supporting" with one element
- Admissible load force up to five times the clamping force
- Olamping with minimum deformation due to relatively little clamping force, but high reten-
- Particularly suitable for "floating clamping"
- Plunger design impedes penetration of fluids into the spring area
- Clamping rows with the narrowest cylinder spacing possible
- Fixtures without tubes are possible



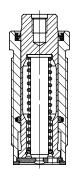
Effective clamping force and admissible load force



Operating pressure [bar]

Retention force for "floating clamping"

Elastic deformation as a function of the load of the piston at an operating pressure


Actual issue see wh.roemheld-usa.com/B1711

Application

Threaded-body cylinders with locking piston have a relatively little clamping force, but a high retention force in opposite direction. Therefore they are particularly suitable for clamping of thinwalled workpieces with minimum deformation as well as for "floating clamping".

Description

Threaded-body cylinders with locking piston are single-acting plunger cylinders, similar to the design of the proved threaded-body cylinders as per data sheet B 1.461. When pressurising the element, the piston will be expanded and locked in the cylinder body.

Materials

Cylinders: High alloy steel, nitrated

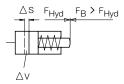
High alloy steel Piston:

Piston seal: NBR Wiper: **FKM** Flat sealing: POM

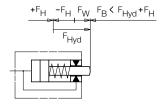
Important notes

Threaded-body cylinders must not be subjected

to a load in retracted position.


During installation, the tightening torque must be

checked with a torque wrench.


Operating conditions, tolerances and other data see data sheet A 0.100.

Function

If a load force FB higher than the hydraulic clamping force $F_{\mbox{Hyd}}$, acts on a standard clamping cylinder, the piston will be pushed back due to the compressibility of the oil.

In such cases the operating pressure has to be increased or a larger clamping cylinder or additional work supports has to be used. The threaded-body cylinder with locking piston does not only clamp the workpiece, but compensates also the machining forces which are up to five times higher and are directed against the clamping force.

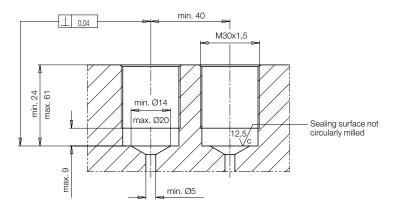
F_{Hvd} = Hydraulic clamping force = Piston area x Oil pressure


= Effective clamping force

= FHVd - FH

= Retention force, resulting from non-positive locking of the piston in the cylinder body

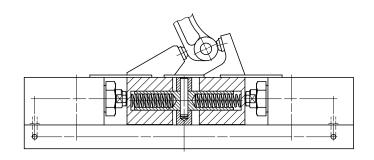
= Load force against the clamping force, e.g. machining forces


Technical data Application example

Piston Ø	[mm]	20
	[mm]	20
Stroke	[mm]	10
Oil volume per 10 mm stroke	[cm ³]	3.14
Max. clamping force* at 500 bar	[kN]	approx. 4.8
Max. load force* at 500 bar	[kN]	approx. 25
Max. operating pressure	[bar]	500
Min. operating pressure	[bar]	50
Recom. pressure range	[bar]	100500
Elastic deformation*	[µm/kN]	2
Temperature range	[°C]	-10+80
Tightening torque	[Nm]	60
Weight	[kg]	0.25
Part no.		1462847
Part no. spare sealing ring		3000842

^{*} see diagram on page 1

Location hole

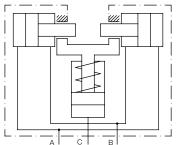


Application example

Simple collet for "floating clamping"

Two clamping bars with **threaded-body cylinders with locking piston** are fixed on a base plate and hydraulically connected by drilled channels. The axial block fixed in the centre is used as guide for both clamping jaws. An installed return spring moves the clamping jaws to its off-position. "Floating" clamping, i.e. the uniform and tongs-type contact at the workpiece independent of its position is possible due to the hydraulic pressure compensation between the cylinders.

Only different spring forces can influence the uniformity. After the pressure increase, the two locking pistons avoid a "further floating" of the clamping point.



Position Flexible Clamp

double acting, separate locking port max. operating pressure 250 bar

Description

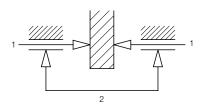
The position flexible clamp is a small vice with two movable jaws, which are operated by a common hydraulic port. Independently of its position within the clamping area, the workpiece will be clamped nipper-like (floating).

By means of a separate locking port, both jaws are hydraulically locked. The clamped workpiece can no longer "float", if the machining forces are introduced.

Oil supply to the locking port can be controlled by a sequence valve or a second clamping circuit.

Application

Position flexible clamping elements can be used for supporting and clamping of unstable workpiece sections. They adapt themselves to the position of the clamping point without deforming them. They cushion vibrations and compensate machining forces from all directions.


Important notes

The upper face of the locking piston clamping element has to be checked from time to time with regard to contamination by swarf and cleaned, if required.

Already 2 mm difference in stroke can cause an one-sided displacing force of 10 N onto the workpiece.

Operating conditions, tolerances and other data see data sheet A 0.100.

Position flexible clamping

For machining in a clamping fixture in 3 levels, a workpiece will be positioned and clamped against a maximum of 5 support and location points.

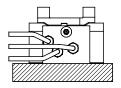
If further sections of the workpiece have to be supported and clamped, additional work supports will be used, on top of which also clamping can be effected.

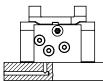
Problem: If the sections to be clamped are very unstable, already the contact of the support plunger causes deformation. If clamping will be made on these work supports, the caused deformation will not be calculable. Variations at the finish-machined workpiece will not be tolerable.

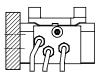
Solution: The use of position flexible clamping elements at such critical points can improve considerably the result.

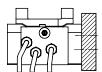
If e.g. a small web has to be clamped, clamping jaws contact the workpiece from both sides with little force and position flexible. Condition is, that the web is within the clamping area. If the hydraulic pressure increases, the clamping force is built up uniformly and nipper-like at both sides, so that there will not be a displacement or deformation from the pre-determined position.

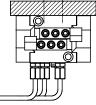
This is the so-called "floating" clamping, since both oppositely-arranged pistons would "float" in case of a workpiece displacement parallel to the piston axis.

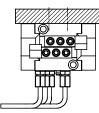

After pressurising the separate locking port, the jaws are locked and are thereby in the position to compensate machining forces in all direc-

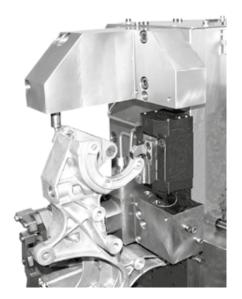

- - Mounting from 4 sides possible
 - Oil supply alternatively via fittings or drilled channels
 - Clamping slide can be greased

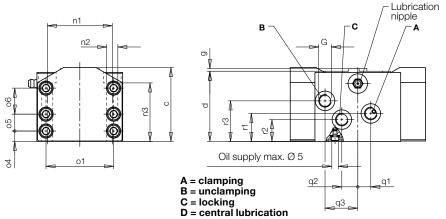

Advantages


- Compact 2-jaws clamping element
- For exterior and interior clamping
- Clamping jaws easily adaptable
- Position flexible within the clamping range
- Can be adapted to big workpiece tolerances
- Very low displacement forces act on the workpiece (see: Important notes)
- Compensation of machining forces from all directions
- Double-acting clamping function
- Locking port can be controlled separately

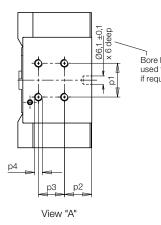

Installation and connecting possibilities







Application example

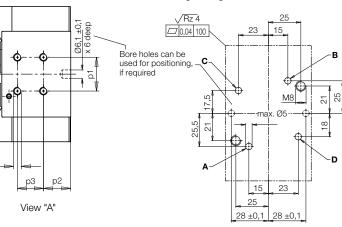

The figure shows a position flexible clamp for "floating clamping" of a self-supporting arm of a power unit support of the automotive industry, which has been fixed in its position by means of swing clamps as per data sheet B 1.880 and B 1.891.

Technical data **Dimensions • Accessories**

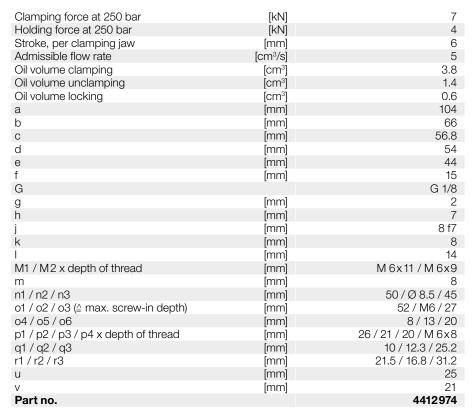
02 Stroke Stroke M1 M2 The complete clamping force is only available in the direction of the presented stroke.

Installation and connecting possibilities

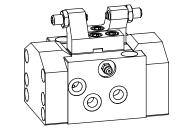
The position flexible clamping element, can be fixed alternatively at the bottom (dimensions n1 up to n3, v, u), or at the back (dimensions p1 up to p4).

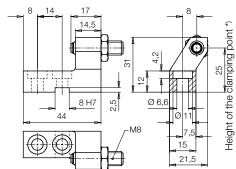

It can also be fixed at both sides. For this purpose per screw row with gauge for bore holes n1 two of the three available screws have to be removed and replaced by the fixing screws (dimensions o1 up to o6). These will hold the complete piston pressure and have to be screwed in at least to dimension o3 - 1 (2) mm.

For manifold mounting remove socket head cap screws with USIT rings and screw-in plugs G 1/8 in the body.


O-rings and plugs see accessories.

Connecting scheme


For O-ring sealing

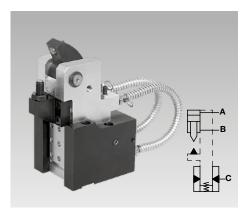


Example with clamping jaws

Accessories		Part no.
Plug G 1/8	(3 x required)	3610158
O-Ring 8x1.5	(4 x required)	3000343

Clamping jaw for exterior clamping of a workpiece web with a thickness of 6 up to 14 mm (adjustable from 0 up to 18 mm).

*) Please consider for your own design of the clamping jaws, that a maximum height of the clamping point of 31 mm must not be excee-


Clamping jaw with swivel contact bolt Part no. 3548447

B 1.733

Position Flexible Clamping Claw

double acting, separate locking port, with optional position monitoring, max. operating pressure 250 bar

Application

Position flexible clamping elements can be used for supporting and clamping of unstable work-piece sections. They adapt themselves to the position of the clamping point without deforming them. They cushion vibrations and compensate machining forces from all directions.

Description

The position flexible clamping claw consists of a U-shaped mounting body and the displaceably embedded clamping unit with oil supply by two short high-pressure hoses with swarf protection.

In the movable clamping unit a double-acting hydraulic cylinder is integrated, whose clamping force is introduced through the clamping lever by 180° into the workpiece support. This support is height-adjustable to clamp workpieces of different thickness.

After the clamping process, the still displaceable clamping unit will be locked by a single-acting cylinder in the mounting body. In unclamped mode, the clamping lever swivels back so far that unimpeded loading and unloading of the clamping fixture can be effected. An inductive or pneumatic position monitoring can be delivered to control the clamping lever.

Position flexible clamping

For machining in a clamping fixture in 3 levels, a workpiece will be positioned and clamped against a maximum of 5 support and location points. If further sections of the workpiece have to be supported and clamped, additional work supports will be used, on top of which also clamping can be effected.

<u>Problem:</u> If the sections to be clamped are very unstable, the contact of the support plunger already causes deformation. If the following clamping is effected, the caused deformation will not be calculable. Variations at the finish-machined workpiece are not acceptable.

<u>Solution</u>: Using position flexible clamping elements at such critical points can considerably improve the result.

Advantages

- Clamps position flexibly within the pendulum range
- Workpiece support points are adjustable and mountable in 4 positions
- Unimpeded loading and unloading of the fixture
- Very low displacement forces act on the workpiece
- Adjustable zero position
- Compensation of machining forces from all directions
- Monitoring of the unclamping position and the end of the clamping stroke can be effected pneumatically or inductively
- The clamping lever can be swivelled into small recesses
- Double-acting clamping function
- The locking port can be controlled separately
- Oil supply alternatively via pipe threads or drilled channels
- Connecting hoses with swarf protection
- Air sealing connection to avoid entry of swarf and coolants

Example: (see figure on the top right)

A workpiece is clamped in a fixture. For machining a relatively unstable web, clamping with minimum deformation is required. A position flexible clamping claw is arranged so that the web is within the clamping range.

First, the clamping cylinder is controlled. By nipper-like "floating" clamping, the web will be clamped between the support and the clamping lever, i.e. the clamping unit adapts itself position flexibly to the height. The occurring displacing force in the mounting body will be minimised by the installed weight compensation.

Then the clamping unit is locked by a second clamping circuit or a sequence valve and can now compensate machining forces from all directions.

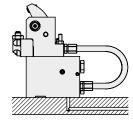
Important notes

The position flexible clamping claw has to be checked regularly about contamination by swarf and cleaned, if required. Regular lubricating reduces the displacing forces on the workpiece during clamping.

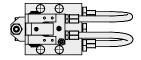
The smaller the distance between the workpiece and the workpiece support point, the smaller the displacing force onto the workpiece during clamping (see contact force).

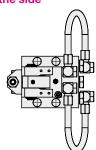
Air sealing increases the life and the sensitivity of the clamping element.

The clamping unit made of aluminium has to be highly protected against abrasive swarf.

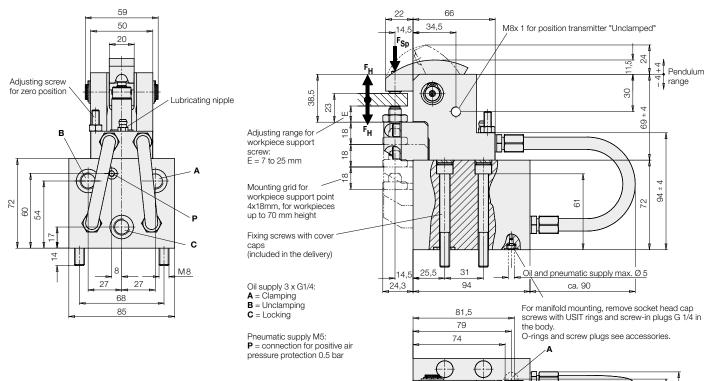


Connecting possibilities

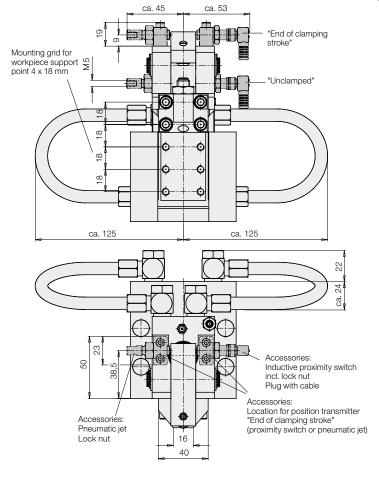

Pipe thread


Drilled channels

Design possibilities Hose at the back



Hose at the side



Dimensions Technical data • Accessories

Design: Hose at the back

Design: Hose at the side

Materials

Clamping unit: Aluminium
Other parts: Steel
Sealings: FKM

Technical data

Part no. Hose at the side		4412978
Part no. Hose at the back		4412977
Max. flow rate	[cm ³ /s]	15
Oil volume locking	[cm ³]	0.2
Oil volume unclamping	[cm ³]	8.0
Oil volume clamping	[cm ³]	13.5
Pendulum range	[mm]	±4
Contact force*	[N]	0 - 30
Min. operating pressure	[bar]	50
Retention force F _H at 250 bar	[kN]	10
Clamping force Fsp at 250 bar	[kN]	7.5

^{*} depending on the adjustment of the pendulum range

Accessories		Part no.
Screw plug G 1/4	3 off	3300821
O-ring 8 x 1.5	4 off	3000275
Inductive proximity switch	ch	3829263
Plug with cable (5m)		3829099
Pneumatic jet with lock		4412997
Location for position tra "End of clamping stroke	nsmitter "	4412984

Article available on request

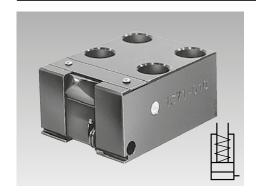
On request, we will check whether the article is still available.

Technical characteristics for inductive proximity switches

Operating voltage UB	1030 V DC
Switching function	Interlock
Switching output	PNP
Material of housing	steel, corrosion resistant
Protection as per DIN 40050	IP 67
Ambient temperature	−25°+70 °C
Type of connection	Connector
Protected against short circuits	ves

26

26



Low-Block Clamping Cylinder

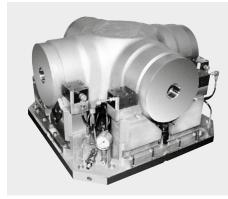
single acting with spring return, max. operating pressure 500 bar

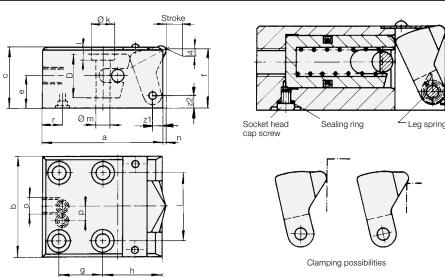
Piston Ø D

Description

The preferred application of low-block clamping cylinders are clamping situations where workholding from above is not possible or necessary. The low-clamping effect is caused by the downward motion of the clamping point. The average horizontal force component is 94% and the vertical force component is approx. 34% of the nominal clamping force. The high vertical force guarantees that the workpieces are safely held down. The clamping lever is continuously hardened so that the shape of the clamping point can be adapted to the workpiece by regrinding.

Material

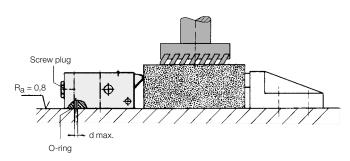

Cylinder body material: Steel, black oxide Clamping lever: 58 Cr V4, Hrc 54-58


Important notes

Cylinders have to be protected against direct influences of aggressive cutting lubricants and coolants.

Operating conditions, tolerances and other data see data sheet A 0.100.

Application example



[mm]

Stroke		[mm]	8	10	10
Clamping force at	100 bar	[kN]	1.7	4	8
· -	500 bar	[kN]	8.5	20	40
Oil volume per 10 mm stroke)	[cm ³]	2	4.9	10.2
a		[mm]	68	90	96
b		[mm]	50	60	80
C		[mm]	32	40	50
d max.		[mm]	6	6	6
е		[mm]	19	23	27
f		[mm]	31	39	49
g		[mm]	27	38	38
h		[mm]	32	42	46
i		[mm]	32	40	56
Øk		[mm]	13.5	15	18
		[mm]	8.5	9	11
Øm		[mm]	8.5	9	11
n		[mm]	2	-	2
0			G 1/4	G 1/4	G 1/4
р		[mm]	-	-	14
r		[mm]	13	14	16
z1		[mm]	5.5	6	8
z2		[mm]	6	9	11
Weight		[kg]	0.9	1.15	2.1
Part no.			1371 010	1373010	1374010
Accessories					
Screw plug G 1/4			3610264	3610264	3610264
O-ring 10 x 2			3000347	3000347	3000347
Spare seal ring			3000536	3000536	3000546
Clamping lever, one piece			3542080	3542081	3542082
Leg spring, spare part			3715104	3715104	3716109

Article available on request

The hydraulic oil can optionally by supplied through tubes or drilled channels in the fixture body; 4 fixing screws are required.

Hydraulic Threaded-Body Clamping Module

pull-type, single and double acting, with anti-torsion device max. operating pressure 500 bar

Application

The hydraulic threaded-body clamping module pull-type was developed for screwing in into:

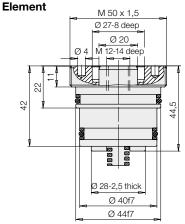
- standardized housings (see page 2)
- fixture bodies or manifold blocks (see figure 2)
- fixture base plates or intermediate plates for pallets or machine tool tables (see page 2)

Application examples

Figure1 shows axial clamping of a workpiece in connection with a C-washer as per DIN 6371/6372. The hydraulic threaded-body clamping module is integrated in a standardized housing (dimensions see page 2).

The C-washer (loose part) has to be attached for each clamping process.

When clamping with elastomer spring elements (see figure 2) the workpiece has to be centered by a shoulder at the location flange, since only axial and radial clamping forces can be introduced by the elastomer spring element.


When using disks (see figure 3) centring is provided by the disks as the axial and radial forces are applied.

The decision, which clamping element has to be used, depends on the tolerance of the workpiece and the required axial retention forces.

Important notes

Operating conditions and other data see data sheet A 0.100.

In single-acting applications, please pay attention to the instructions for bleeding of the spring area on data sheet G 0.110.

Installation dimensions

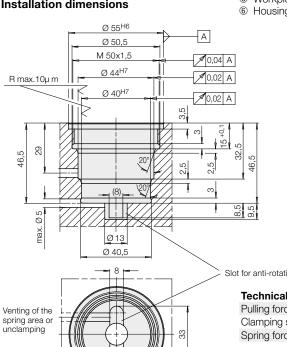


Figure 2 - Clamping with elastomer spring element

Clamping

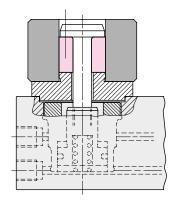
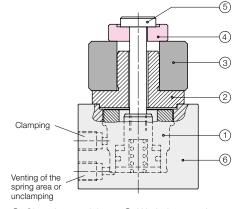
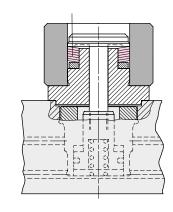



Figure 1 - Clamping with C-washer

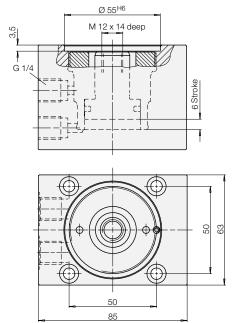


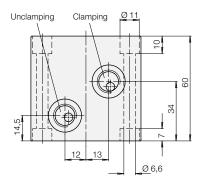
- ① Clamping module ② Workpiece carrier
- 3 Workpiece 4 C-washer ⑤ Tie rod
- 6 Housing for clamping module

t for anti-rotation device		
Technical data		
Pulling force at 500 bar	[kN]	24.5
Clamping stroke, pulling	[mm]	6.0
Spring force	[N]	80-200
		Part no.
Hydraulic threaded-body clamping module		1574811
Hydraulic threaded-body clamping module with hou	sing	157/1919

Figure 3 - Clamping with disk

(see page 2)




1574812

Dimensions Application example

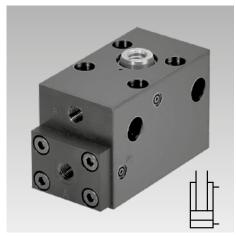
Hydraulic threaded-body clamping module with housing

Hydraulic threaded-body clamping module with housing Part no. 1574812

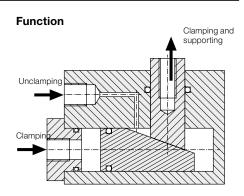
Application example

Installation of hydraulic clamping modules in the base plate of a multiple clamping fixture.

Transmission of the clamping force is made by an elastomer spring element \emptyset 50 x \emptyset 17 x 32 mm high. The workpieces are centred by the shoulder at the flange.


In such an arrangement for clamping neither a wrench is required nor a C-washer has to be handled.

Clamping and Supporting Element


self-locking,

double acting, max. operating pressure 300 bar

Advantages

- Clamping and support function in one element
- Self-locking wedge clamping
- Re-clamping with hydraulic pressure
- High clamping safety also in case of sudden pressure drop
- Cushioning of vibration
- Interchangeable contact bolts
- Many fixing possibilities
- Oil supply optionally by fittings or through drilled channels
- Standard FKM seals
- Maintenance free

Application

The piston of traditional clamping cylinders is pushed back, if the counter force is bigger than the hydraulic clamping force. This is due to the compressibility of the hydraulic oil and the expansion of hydraulic hoses.

In the case of the clamping and supporting element this elasticity is avoided by the wedge-shaped cross piston with its self-locking geometry. Due to this fact there are the following possibilities of application:

- Workpieces must be firmly clamped even in case of a pressure drop in the hydraulic system
- Ribbings or webs of workpieces must be clamped by opposite clamping elements in a neutral position and then immovably locked.
- The machining forces are relatively high and directed against the clamping force
- Vibrations in the workpiece have to be cushioned

For all applications:

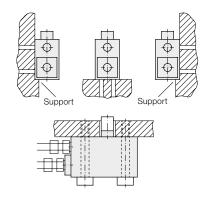
If the workpiece yields or the contact bolt digs deeper into the material due to machining forces or vibrations, the clamping and supporting element re-clamps provided that sufficient clamping pressure is available.

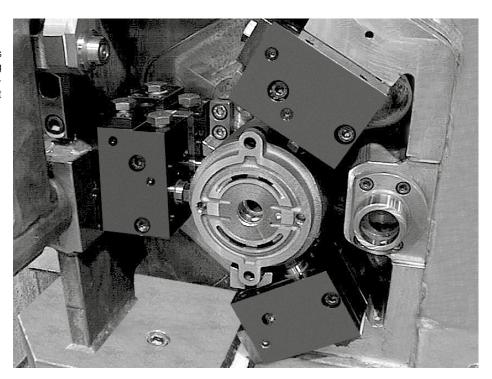
Important notes

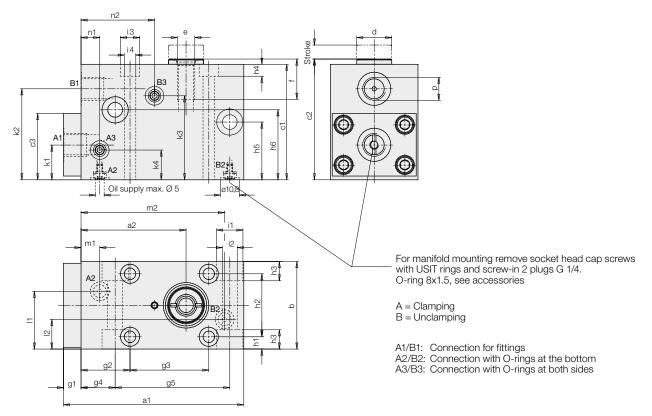
- The clamping bolt is protected against torsion, but cannot compensate a permanent torque during operation.
- The clamping and supporting element is not suitable for the use as pull-type cylinder.
- If the clamping and supporting element is uncoupled from oil supply after clamping,
 e.g. on pallets, we recommend to install an accumulator in order to guarantee a reclamping effect.
- Further operating conditions, tolerances and other data see data sheet A 0.100.

Description

The clamping and supporting element is a hydraulic clamping cylinder with mechanical locking according to the wedge principle.

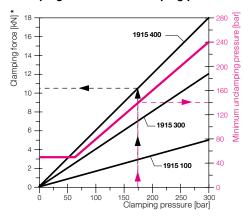

Forces which are directed against the clamping force, e.g. machining forces will be supported with a negligible elasticity of the wedge-shaped piston. The counter force must not exceed the max. clamping force (see chart).


The clamping bolt is equipped with an interior thread to screw-in contact bolts for height adjustment or adapted contact bolts for shape adjustment.


The housing allows different fixing and connecting possibilities.

Oil supply is made at the front face with fittings or optionally through drilled channels with O-ring sealing at both sides or at the bottom.

Fixing possibilities



Clamping force *	[kN]	5	12	18
Max. operating pressure	[bar]	300	300	300
Oil volume clamping	[cm ³]	2,8	10,8	26,5
Oil volume unclamping	[cm ³]	2,2	8,3	22
Stroke	[mm]	5	8	12
a1	[mm]	85	103	127
a2	[mm]	47,2	60	71
b	[mm]	40	50	64
c1	[mm]	45	66	78
c2	[mm]	48	69	81
c3	[mm]	45	37,9	47,5
Ød	[mm]	12	20	22
е	[mm]	M5	M10	M12
f	[mm]	10	23	24
g1	[mm]	15	10	12
g2	[mm]	24,5	28	41
g3	[mm]	39	45	44
g4	[mm]	24,5	28	26
g5	[mm]	39	57	75
h1	[mm]	6,5	7	9
h2	[mm]	27	36	46
h3	[mm]	11,5	11	11
h4	[mm]	12	6,8	9
h5	[mm]	38,5	40	52
h6	[mm]	8	40	52
Ø i1	[mm]	10,5	15	18
Ø i2	[mm]	6,5	8,5	10,5
Ø i3	[mm]	9,5	11	15
Ø i4	[mm]	5,5	6,6	8,5
k1	[mm]	18	20	25
k2	[mm]	36,5	52	64
k3	[mm]	10	52	64
k4	[mm]	22	20	25
11	[mm]	25	33	40
12	[mm]	16	17	24
m1	[mm]	9,7	10,7	10,7
m2	ľmmĺ	60,5	85	105,5
n1	[mm]	9,7	10,7	10,7
n2	[mm]	44,2	42	52
P	. ,	G1/8*	G1/4	G1/4
* Use fittings DL6 DIN2353.				
Part no.		1915100	1915300	1915400

Clamping force and unclamping pressure

Example:

Clamping and supporting element	1915400
Clamping pressure	175 bar
Clamping force	10,5 kN
Min. unclamping pressure	140 bar

*Important note

With the wedge principle the effective clamping force depends on the friction of the sliding surfaces. After several thousand operations with load a smoothing of these sliding surfaces can be noticed, that reduces considerably the adhesion factor and can increase the clamping force up to 75%.

Therefore the indicated clamping forces are minimum values. For unclamping the selflocking of the wedge clamping must be overcome.

That is the reason why the minimum unclamping pressure must be at least 80% of the applied clamping pressure.

Article available on request

O-Ring (FKM) 8x1,5

Plug (flush screwable)

Screw-in plug

Alternatively

Contact bolt

Accessories (not included in the delivery)

3000275

3300821

0361987

3614002

3000275

3300821

0361987

3614028

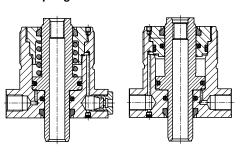
3000275

3610047

0361986

3614027

Hollow-Piston Cylinders


Version with internal thread single and double acting, max. operating pressure 500 bar

Advantages

- 6 sizes available
- Single or double acting optionally
- Pull force up to 188 kN
- Push force up to 153 kN
- Piston with through hole
- Internal thread for fixing threaded rods or contact bolts
- Conversion of existing fixtures to hydraulic clamping
- Many installation possibilities

Single acting Double acting with spring return

Application

Hollow-piston cylinders are especially suitable for clamping workpieces that have a through hole or opening.

Description

The piston has a through hole with an internal thread. In connection with a standard tie rod and C-washer combination a variety of applications is possible (see application examples). After the workpiece has been inserted and centred by hand, the C-washer can be pushed onto the tie rod and then clamped hydraulically. Compared to mechanical clamping with clamping screws this has significant advantages:

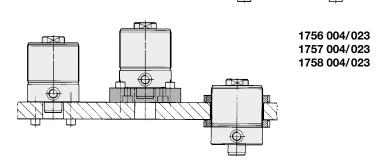
- The clamping force can be hydraulically adjusted with precision and high repetitive accuracy.
- The operator can fully concentrate on the correct position of the workpiece.
- A significant time saving.

Equipped with a contact bolt (see data sheet G 3.800), the hollow piston cylinder can also be used for direct die clamping. The piston thread can be drilled open, if required.

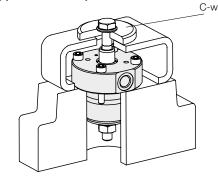
If the hollow-piston cylinder is mounted onto movable parts, e.g. clamps, the hydraulic oil has to be supplied through a high-pressure hose.

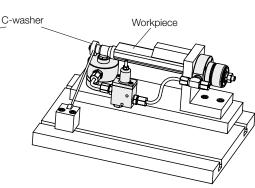
Important notes

For operating pressures exceeding 350 bar only bolts, studs, or screws of material 10.9 must be used.


It is important to torque the lock nut used sufficiently to prevent damaging the piston threads. Penetration of aggressive cutting lubricants and coolants through the sintered metal air filter into the cylinder's interior should be avoided by appropriate arrangement or covering.

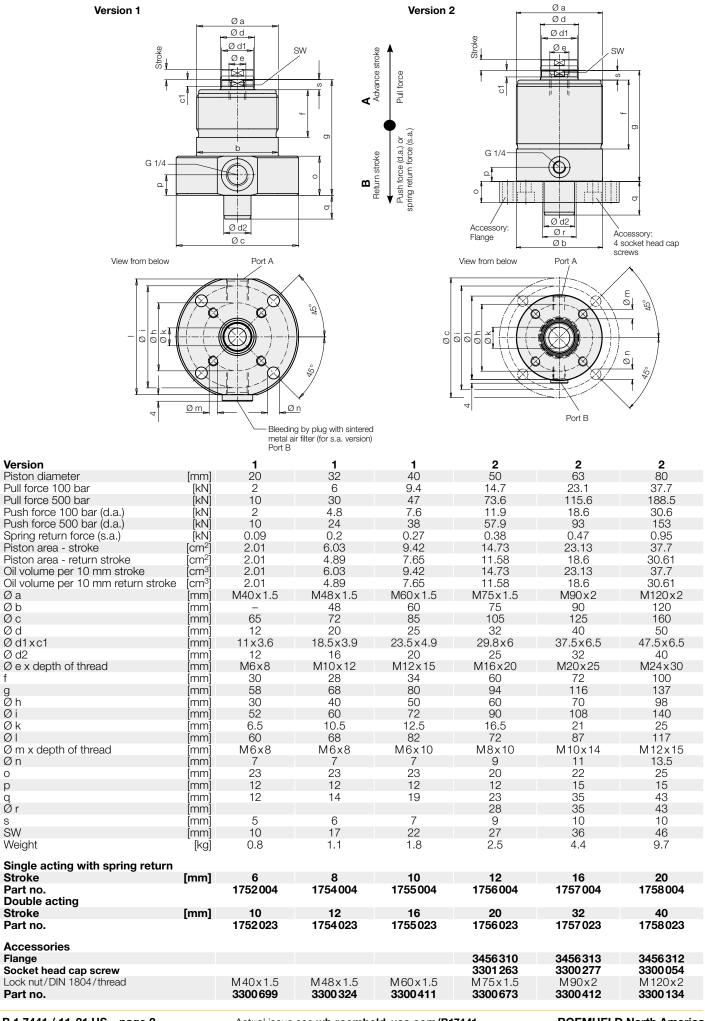
Operating conditions, tolerances and other data see data sheet G 0.100.


When using single-acting hollow-piston cylinders, it is absolutely necessary to follow the instructions for bleeding of the spring area on data sheet G 0.110.


Installation possibilities

1752 004/023 1754 004/023 1755 004/023

Application examples

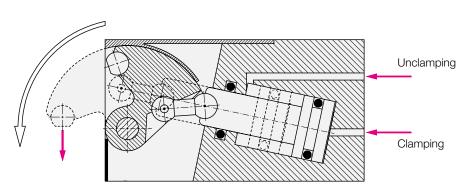


Hollow-piston cylinders in combination with push-pull bolt and "C"-washer can be used advantageously in many cases to clamp work-pieces with centre openings.

On the machine table, the workpiece is additionally supported by means of a work support after clamping with a hollow-piston cylinder in combination with a sequence valve (as per data sheet C 2.954).

The support plunger of the work support is retracted in off-position to facilitate workpiece loading. Contact is effected by means of spring force.

Compared to mechanical clamping, a time saving of 60% is achieved.



Flat Clamp

with optional position monitoring, double acting, max. operating pressure 500 bar

Application

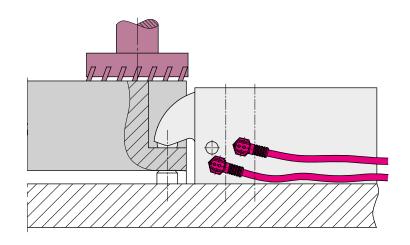
The flat clamp is a compact and flat clamping element with large clamping stroke. This clamp is designed for clamping of flat workpieces in fixtures on machine tools or for welding applications. It is well protected against coolants and swarf and resistant to welding spatter.

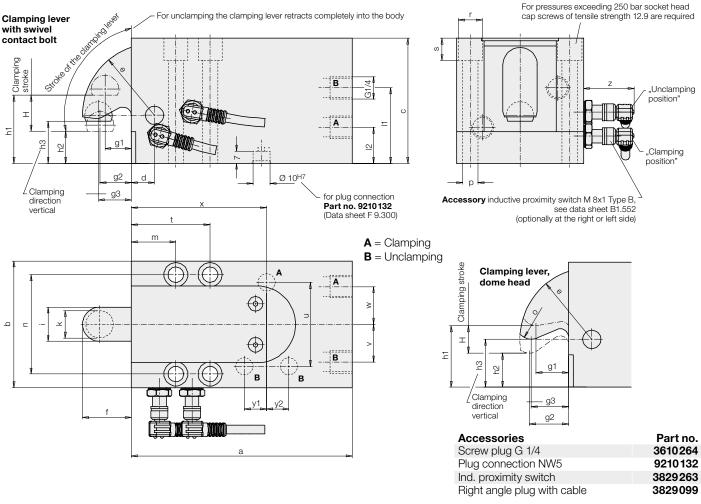
Description

The flat clamp is a double-acting hydraulic clamping element where the piston acts via a con-rod onto a clamping lever. In unclamped position, the clamping lever is completely retracted and the workpieces can easily be inserted from above. A clamping recess which is larger than the clamping lever is sufficient as clamping point.

The element compensates transverse forces at the clamping point. The clamping forces are introduced vertically to the base at the clamping height "h3", therefore introducing no additional turning moments.

Advantages


- flat and compact design
- high protection against swarf and welding spatter
- large clamping stroke
- clamping lever is completely retracted in unclamped mode
- transverse forces at the clamping point are compensated
- reduced maintenance
- Position monitoring, optional

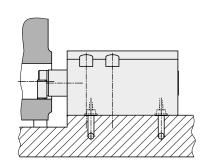

Important notes

For metal-cutting and vertical mounting position (clamping lever upwards) it is recommended to remove the cover plate.

Operating conditions, tolerances and other data see data sheet A 0.100.

Application example with inductive position monitoring

		Clamping lever	dome head	with swivel contact bolt	dome head	with swivel contact bolt
Clamping force at h0 /h1	100 bar		2.1 / 2.4	2.3 / 2.5	3.7 / 4.1	3.8 / 4.1
Clamping force at h3/h1	500 bar	[kN]	10.5 / 12	11.5 / 12.5	18.5 / 20.5	19 / 20.5
H Clamping stroke max.		[mm]	12	9	16	10
Oil volume clamping	min./max. stroke	[cm ³]	5.89 / 9.57	6.48 / 9.57	12.63 / 20.51	15.12 / 20.51
Oil volume unclamping	min./max. stroke	[cm³]	3.48 / 5.65	3.83 / 5.65	7.69 / 12.50	9.21 / 12.50
а		[mm]	108.5	108.5	129	129
b		[mm]	60	60	75	75
C		[mm]	58.5	58.5	73.5	73.5
d		[mm]	10	10	13.5	13.5
е		[mm]	34	34	42	42
f		[mm]	24	24	28.5	28.5
g1		[mm]	16	14	18	17.5
g2		[mm]	20	16	22.5	19
g3		[mm]	19.5	16	22	19
h1 Clamping height. max.		[mm]	30	28	38	34.5
h2 Clamping height. min.		[mm]	18	19	22	24.5
h3 Clamping height. vertic	cal clamping direction	[mm]	21	20	28	26
i		[mm]	15	15	20	20
k		[mm]	_	12	_	16
11		[mm]	45	45	44	44
12		[mm]	30	30	21	21
m		[mm]	20.5	20.5	26	26
n		[mm]	47	47	58	58
0		[mm]	6	_	8	_
р		[mm]	6.6	6.6	8.5	8.5
r		[mm]	11	11	13.5	13.5
S		[mm]	12	12	13	13
t		[mm]	40.5	40.5	46	46
$u \pm 0.02$		[mm]	42	42	44	44
V		[mm]	19	19	22	22
W		[mm]	19	19	0	0
X		[mm]	76.5	76.5	66	66
$y1 \pm 0.02$		[mm]	13	13	_	_
y2 ±0.02		[mm]	-	-	10	10
Z		[mm]	32	32	29	29
Part no.			1824201	1824202	1824261	1824262


Block Clamps

Versions with/without self-locking double acting, max. operating pressure 70/100 bar

Advantages

- Large retention force
- Flat design
- Clamping in small recesses and bore holes
- Suitable for machining from 5 sides
- 2 sizes with and without self-locking available
- Low pressure allows direct connection to the hydraulic system of the machine
- Contact bolts exchangeable
- Clamping direction 0 to 360° adjustable
- Alternatively pipe connection or manifoldmounting connection

Application

Hydraulic block clamps are particularly suitable for clamping of workpieces, that require a large free space for machining, and for applications where conventional clamps and swing clamps are too big.

Especially for the machining from five sides the reduced height of the block clamp and the possibility to immerge into a horizontal bore hole for clamping are of special advantage.

The block clamp with self-locking is preferably used on clamping pallets, that will be disconnected from the pressure generator after clamping.

The low operating pressure of 70 and/or 100 bar allows the direct connection to the low-pressure hydraulics of many machining machines.

Important notes

Block clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces. In the effective area of the clamping bolt there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

Operating instructions

When mounting the block clamp pay attention to careful bleeding (see page 2). The clamping bolt must effect its linear stroke to the clamping point without any impediments in order to avoid damages of the mechanics or at the workpiece. In extended position, the clamping bolt is not protected against torsion so that the contact bolt can adapt itself to the workpiece contour. In retracted position, the clamping bolt is turned back again to the angle position previously adjusted at the cover, if the deviation is smaller than $\pm 8^\circ$ (see also page 2).

Operating conditions, tolerances and other data see data sheet A 0.100.

Description

Block clamps are double acting hydraulic cylinders. The clamping bolt is supported by a ball bearing and can be swivelled. During the linear extending stroke the clamping bolt with the contact bolt is moved above the clamping point and then swivelled onto the clamping point by means of a wedge drive.

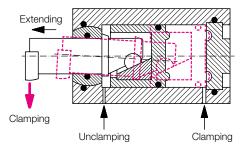
The version without self-locking has a smooth wedge surface and requires a constantly available oil pressure.

In the version with self-locking, the wedge drive is provided with a toothing to increase the factor of friction. Thus the clamping force is considerably smaller, but is maintained in the case of a pressure drop.

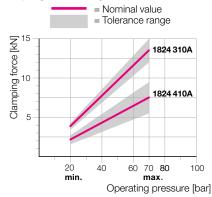
By twisting the clamping bolt together with the rear bottom cover every desired angle position can be adjusted (see also page 2).

Effective clamping force

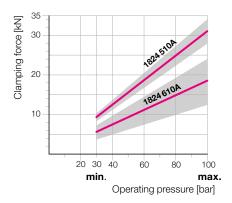
The clamping force is generated by a wedge drive and therefore depends on the friction of the sliding surfaces. The friction coefficient is not constant over the entire service life. At the beginning it is a little higher, i.e. the clamping force does not yet attain the set value. With increasing stroke cycles, the friction surfaces become smoother and the clamping force increases slowly. After some hundred thousand operations, the effective clamping force can exceed the nominal value by 10 to 30% (see chart).


This characteristic of wedge drives must be taken into consideration for the fixture design, i.e.

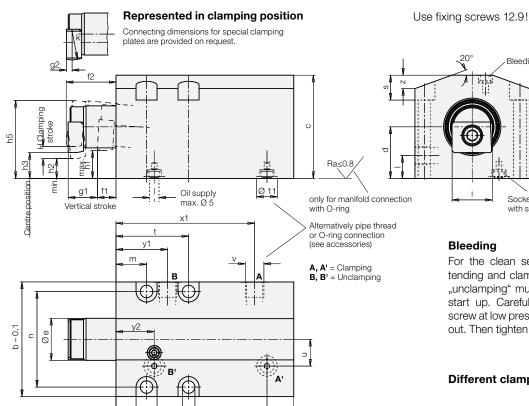
- The reduced clamping force in new condition must be sufficient for safe clamping of the workpiece.
- 2. With increasing clamping force the workpiece must not be inadmissibly deformed.


Conclusion: If an exactly reproducible clamping force is required, conventional clamping elements with direct piston drive must be used.

Position monitoring


Versions with extended piston rod at the back and pneumatic position monitoring are available on request.

Clamping force diagram



1824310A without self-locking with self-locking

1824510A without self-locking with self-locking

Dimensions Technical data • Clamping direction

without

locking

28.9/22.8

13.5

70

20

6

93

60

54

27

22

10

26

15

3

14

11

4

41

21

15

12

16

50

6.6

11

13

38

14

G 1/8

72.5

13.5

[kN]

[bar]

[bar]

[cm3]

[mm]

[mm] [mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm] [mm]

[mm]

[mm]

[mm]

[mm]

with

self-

7.5

70

20

6

93

60

54

27

22

10

26

15

3

14

11

4

41

21

15

12

16

50

6.6

11

13

38

14

G 1/8

72.5

70

13.5

locking

28.9/22.8

without

locking

102/76.4

self-

31

100

30

8

126

88

75

37.5

35

13

26

3

19

15

18.5

6

60

34

25

13

21

72

11

18

20

53

15

99

108

G 1/4

40.5

with

self-

18.5

100

30

8

126

88

75

37.5

35

13

26

3

19

15

18.5

6

60

34

25

13

21

72

11

18

20

53

15

99

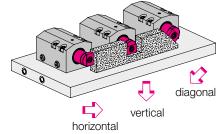
108

G 1/4

40.5

locking

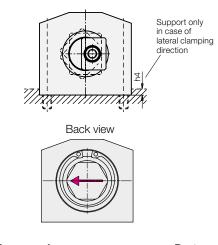
102/76.4


For the clean separation of the functions ex-
tending and clamping above all the connection "unclamping" must be carefully bled during the
start up. Carefully loosen the upper bleeding
screw at low pressure until bubble-free oil comes
out. Then tighten again and check density.

Socket head cap screw

with sealing ring

Different clamping directions


Bleeding screw

Clamping direction can optionally be in all directions vertically to the axis of the clamping lever. The clamping lever must be in retracted position and the cylinder cover must be rotated by the corresponding angle.

When adjusting the clamping direction at the cover, it has to be considered that the clamping direction of the contact bolt goes in the same direction.

Example: 90° counterclockwise

\Z	[mm]	07	07	27	37	Accessories	Part no.
y1	[mm]	27	27	37	28	O-ring 8 x 1.5	3000343
y2	[mm] [mm]	20	20	28 10	28 10	Screw plug G 1/8	3610047
Part no.	[i i ii i i	1824310Å	1824410Å	1824510A	1824610A	Screw plug G 1/4	3300821
* Effective clamping force	see nage 1						

^{*} Effective clamping force see page 1

Claming function

Oil volume

а

С

d

Øе

f1

f2

g1

g2

h1

h2

h3

h4

h5

k

m

n

р

S

u

x1

x2

b -0.1

Clamping force approx.*

Max. operating pressure

Min. operating pressure

Clamping / Unclamping

H max. clamping stroke.

Slide Pivot Clamp

compact version, with optional position monitoring, double acting, max. operating pressure 350 bar

Advantages

- High clamping force, up to 10 kN
- Minimum dimensions
- High efficiency
- Increased rigidity allows compensation of transverse forces at the clamping point
- Unimpeded loading and unloading of the fixture
- Inductive or pneumatic monitoring of the clamping lever available as accessory
- Monitoring of the unclamping position and the usable clamping range is possible
- Clamping lever can be swivelled into small recesses
- Partially immersed mounting of the body
- Oil supply alternatively via fittings or drilled channels
- Long life due to metallic wiper to protect the piston rod

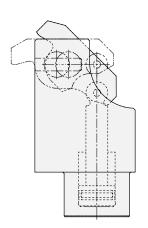
In the case of the slide pivot clamp the piston force is deviated by 180° by the clamping lever and is available as clamping force with virtually no loss of efficiency. Kinematics of the slide pivot clamp allow sliding back of the clamping lever during unclamping for unimpeded insertion of the workpieces.

Position of the clamping lever can be monitored by inductive proximity switches or pneumatic iets.

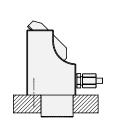
The pivot slide clamp can be installed immersed up to the flange surface in a hole of the fixture body or via intermediate plates which are available as an accessory. For both solutions there is the possibility to supply the hydraulic oil not only by fitting connection but also via drilled channels in the fixture body.

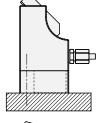
Important notes

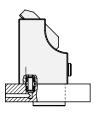
The clamping lever must not be impeded during swivelling movement.


The slots of the sliding pad have to be checked from time to time with regard to contamination by swarf and cleaned, if required.

Operating conditions, tolerances and other data see data sheet A 0.100.

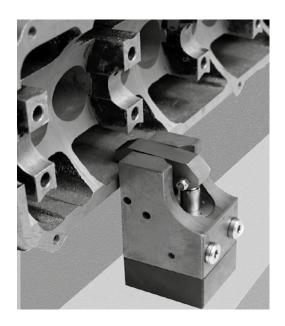

ApplicationThe slide pix

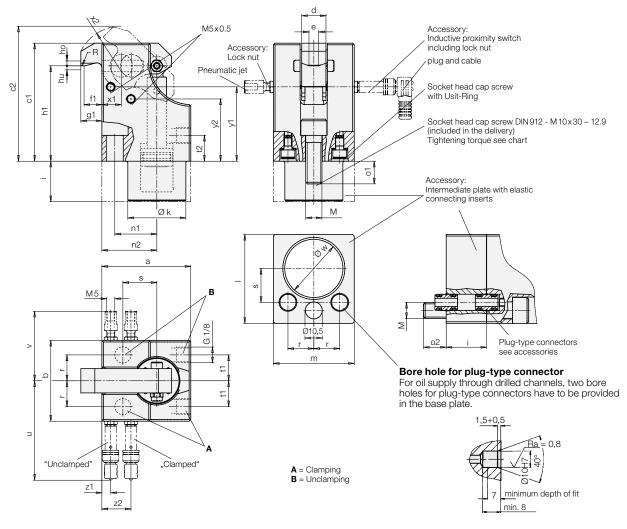

The slide pivot clamp has in relation to its base a very high clamping force. The clamps are particularly suitable for clamping tasks on machines with high performance and reduced space availability on the fixture. The work-pieces can be inserted from above without any impediments. A clamping recess a little bit wider than the clamping lever is sufficient as clamping surface. This characteristic indicates their use for clamping of aluminium parts, which are very sensitive against deformation, with correspondingly reduced oil pressure.


Function



Installation possibilities





Clamping force F _{Sp} at 350 bar	[kN]	10
Oil volume clamping	[cm ³]	6
Oil volume unclamping	[cm ³]	4
Max. flow rate	[cm ³ /s]	10
a	[mm]	55
b	[mm]	50
c1 / c2	[mm]	73 / 83.5
d	[mm]	15
е	[mm]	6
f1	[mm]	11
g1	[mm]	13
h1	[mm]	59
ho / hu, upper / lower clamping point	[mm]	3.0 / 2.5
i	[mm]	25
Øk	[mm]	35.9
1	[mm]	55
m	[mm]	50
M, socket head cap screw DIN912 /		
seating torque	[Nm]	M10 / 87
n1 / n2	[mm]	26 / 34
01 / 02	[mm]	14 / 14
r ±0.02	[mm]	16
R	[mm]	5
$s \pm 0.02$	[mm]	21
t1 / t2	[mm]	16 / 16
u, approx.	[mm]	62
v, approx.	[mm]	43
Ø w +0.1, mounting hole	[mm]	36
x1 / x2	[mm]	12 / 28
y1 / y2	[mm]	46 / 38.5
z1 / z2	[mm]	5.5 / 18
Part no.		1824040

Article available on request

On request, we will check whether the article is still available.

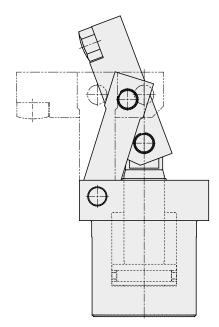
For manifold mounting, remove socket head cap screws with USIT rings and 2 screw-in plugs ${\rm G}$ 1/8 in the body.

Accessory	Part no.
Screw plug G 1/8	3610158
Plug-type connector Required are: 2 off without or 4 off with intermediate plate	9210132
Induct. proximity switch	3829198
Plug + cable	3829099
Pneumatic jet	3612033
Lock nut	3301803
Intermediate plate for 1824040	3456425
Socket head cap screw DIN912-M10x55 12.9	3300434

Technical characterisitcs for inductif proximity switches

ioi illuuotii pioxilliity oiiito	1100
Operating voltage UB	1030 V DC
Switching function	Interlock
Output	PNP
Filter body material	Stainless steel
Protection as per DIN 40050	IP 67
Environmental temperature	-25+70 °C
Connection	Connector
LED Function display	Yes
Constant current max.	150 mA
Rated operating distance	0.8 mm
Protected against short circuit	s Yes

Hinge Clamp


double acting, max. operating pressure 200 bar

Advantages

- Compact design
- Large clamping area of 6 mm
- The clamping lever is completely retracted in off-position
- Interchangeable contact bolts
- 3 clamping levers available
- Clamping lever can be adapted to the workpiece
- Mounting position: any
- Low-cost

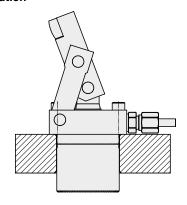
Function

Description

When pressurising the element, the piston moves from the unclamped position upwards. The clamping lever swivels forward by means of the two links and at the same time downwards onto the workpiece.

The clamping lever is provided with an internal thread to accept a contact bolt, which can be easily exchanged.

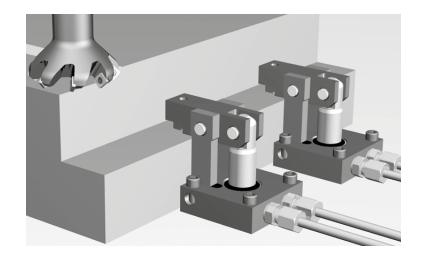
Oil supply is made from the back by means of fittings.

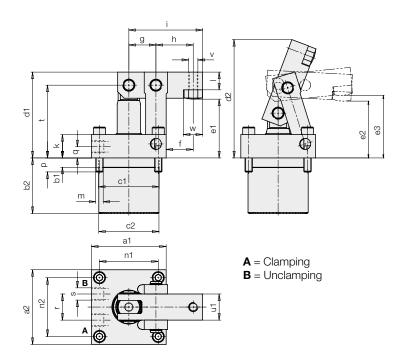

Application

The hinge clamp is a low-cost element with high clamping force for simple clamping tasks.

Workpieces can be easily inserted from above, since the clamping lever swivels completely behind the front edge of the element.

Due to the simple design of the components, clamping lever and contact bolts can be easily adapted to the workpiece.


Installation



Important notes

Due to the open design, it should be checked regularly to see if the hinge clamp is contaminated by swarf and needs cleaning.

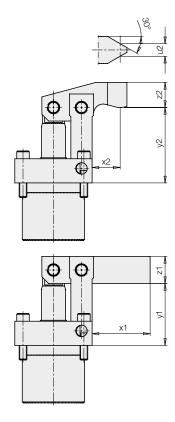
Operating conditions, tolerances and other data see data sheet A 0.100.

Accessories:

Swivel contact bolt M10 flat face, see data sheet G 3.800, dimension e1 – 8mm

Part no. 3614073

When using longer contact bolts or longer clamping levers, the clamping lever does not swivel completely behind the front edge of the body.


Clamping force	[kN]	18
Max. operating pressure	[bar]	200
Oil volume clamping	[cm ³]	40,2
Oil volume unclamping	[cm ³]	24,5
a1	[mm]	80
a2	[mm]	80
b1	[mm]	10
b2	[mm]	59,5
Ø c1 -0,2	[mm]	65
Ø c2 -0,5	[mm]	64,5
d1	[mm]	92
d2	[mm]	127
e1	[mm]	63
e2, lower clamping point	[mm]	61
e3, upper clamping point	[mm]	67
f	[mm]	29
g	[mm]	29
h	[mm]	40
i	[mm]	79
k	[mm]	25
	[mm]	19
m		M8
n1	[mm]	63
n2	[mm]	63
p	[mm]	15
q	[mm]	12
r	[mm]	28
S		G 1/4
t	[mm]	78
u1	[mm]	28
u2	[mm]	13
V		M10
W	[mm]	20,5
x1	[mm]	60
x2	[mm]	29
y1	[mm]	64
y2	[mm]	78
z1	[mm]	28
z2	[mm]	26
Part no.		1825500

Hinge clamp with cranked clamping lever (Dimensions u2, x2, y2, z2)

Part no. 1825506

Hinge clamp with clamping lever, long, unmachined (Dimensions x1, y1, z1)

Part no. 1825505

Special features:

If the maximum clamping force has to be applied, the material of the assembly plate must have a minimum yield point of Re/Rp $0.2 \ge 160 \text{ N/mm}^2$.

Article available on request

Hinge Clamps

with metallic wiper edge and optional position monitoring, double acting, max. operating pressure 250 bar

Application

The hinge clamp is a low-cost hydraulic clamping element with many installation and connecting possibilities.

If the clamping lever is completely retracted, unimpeded loading and unloading of the fixture can be effected. A clamping recess in the workpiece a little bit wider than the clamping lever is sufficient as clamping surface.

The special kinematics allow clamping nearly without side loads of workpieces which are very sensitive against deformation.

Description

When pressurising the element, the piston moves upwards and swivels the clamping lever over the hinges forwards and at the same time downwards onto the workpiece.

The piston force is deviated by 180° and is available as clamping force with virtually no loss of efficiency.

If the level of the clamping surface is exactly on height h (see page 2), no side loads are introduced into the workpiece.

The bodies are recessible in the fixture up to the flange. Alternatively intermediate plates are available for height adjustment.

All versions are optionally available with extended piston rod and with inductive or pneumatic position monitoring.

Important notes

Hinge clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil.

Hinge clamps can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces. Considerable injuries can be caused to fingers during clamping and unclamping in the effective area of the clamping lever.

The manufacturer of the fixture or the machine is obliged to provide effective protection devic-

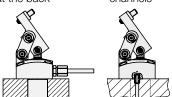
Hinge clamps have to be checked regularly on contamination by swarf and have to be cleaned. Operating conditions, tolerances and other data see data sheet A 0.100.

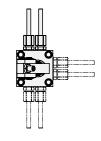
Advantages

- Compact design
- Body partially recessible
- Oil supply alternatively via pipe threads or drilled channels
- Unimpeded loading and unloading of the fixture
- The clamping lever can be swivelled into small recesses
- Clamping possible without side loads
- Long clamping lever adaptable to the workpiece
- Lever mechanism easy to clean
- Standard metallic wiper edge
- Standard FKM seals
- Inductive or pneumatic control of the clamping position and the clamping range optional

Installation and connecting possibilities

Cartridge type

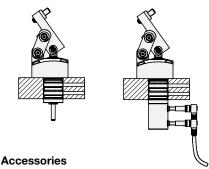

for horizontally-drilled channels


Pipe thread at the back / Plug-type connector

Pipe thread, at the back

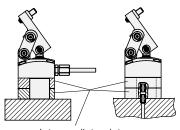
for vertically-drilled channels

Pipe thread at 3 sides



Metallic wiper edge

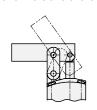
Option


Extended piston rod

for all versions available without with position monitoring position monitoring

Intermediate plates

for all versions with pipe thread



Intermediate plates

Option

Long clamping lever

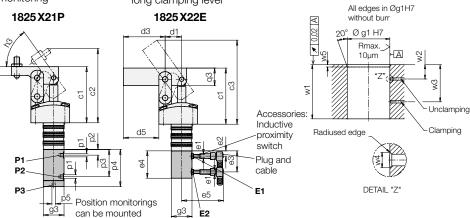
for all versions available.

Alternatively all versions are also available without clamping lever.

Dimensions Accessories

Cartridge type

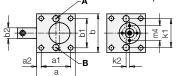
Clamping lever with swivel contact bolt


without clamping lever extended piston rod

1825 X11 1825 X20 m1

Optionally

with pneumatic position monitoring


Optionally with inductive position monitoring/ long clamping lever

Pipe thread at the back / plug-type connector

Clamping lever with swivel contact bolt

without clamping lever extended piston rod

A = Clamping

B = Unclamping

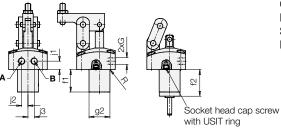
E1 = Clamping range, inductive

rotated by 4x90°

E2 = Unclamped, inductive **P1** = Clamping range, pneum.

P2 = Unclamped, pneum.

P3 = Outlet air, pneum. position monitoring


Intermediate plates for versions with pipe

Location hole

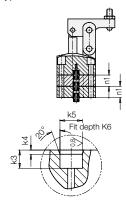
for cartridge type

1825 X31

Materials

Clamping lever: C45 + C (1.0503)

steel Body: Sealings: FKM

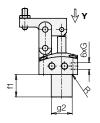

Piston: high alloy steel

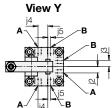
Accessories

Accessories:

threads

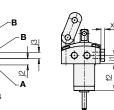
Plug-type connector



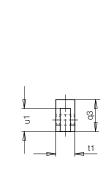

For oil supply through plug-type connectors, these bore holes have to be provided in the base plate. Required accessory when using plug-type connectors: 2 x sealing plug or 2 x screw plug (see page 4)

Pipe thread at 3 sides

1825 X51


Clamping lever with swivel contact bolt

1825X60


Without clamping lever extended piston rod



4 x screw plug with sealing edge included in the delivery (dimension x 1)

Connecting dimensions for self-manufactured clamping levers

Connecting differsions for sen-manufactured clamping levers							
Size		1	2	3	4		
d1	[mm]	23.5	33	37	43.5		
q3	[mm]	25	40	50	55		
s1	[mm]	7	10.5	13	16.5		
s2	[mm]	Ø8 H7	Ø12 H7	Ø15 H7	Ø18 H7		
s3	[mm]	Ø6 H7	Ø9 H7	Ø12 H7	Ø14 H7		
t1	[mm]	15 - 0.1	20 -0.1	25 - 0.1	30 - 0.1		
t2	[mm]	9	16.5	20	20		
t3	[mm]	5	8	12	12		
t4	[mm]	5	8	32	32		
u1	[mm]	18	27.5	35.5	40		
u2	[mm]	18	24	31	40		
u3	[mm]	8.1 + 0.1	10 + 0.1	13 + 0.1	18 + 0.2		

Technical data Dimensions

1 3.8 3.3 4.8 4.1 2.1 15.7 55 42 6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5 64	2 9.7 9.1 16.9 16.0 10.0 24.5 70 56 7 46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	3 14.4 13.9 31.1 30.0 19.0 24.5 85 69 8 52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx.60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113 3.5	60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
3.3 4.8 4.1 2.1 15.7 55 42 6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	9.1 16.9 16.0 10.0 24.5 70 56 7 46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	13.9 31.1 30.0 19.0 24.5 85 69 8 52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	21 61.6 60.2 37.5 55 100 81 9.5 60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
4.8 4.1 2.1 15.7 55 42 6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	16.9 16.0 10.0 24.5 70 56 7 46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	31.1 30.0 19.0 24.5 85 69 8 52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	61.6 60.2 37.5 55 100 81 9.5 60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
4.1 2.1 15.7 55 42 6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	16.0 10.0 24.5 70 56 7 46 4 × Ø 9 18 70 56 20 1116 150 171 33 39.5 81.5 37.5 68.5 M5×0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	30.0 19.0 24.5 85 69 8 52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5 x 0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	60.2 37.5 55 100 81 9.5 60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
2.1 15.7 55 42 6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	10.0 24.5 70 56 7 46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	19.0 24.5 85 69 8 52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5 x 0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	37.5 55 100 81 9.5 60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
15.7 55 42 6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	24.5 70 56 7 46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	24.5 85 69 8 52 4 × Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5×0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	55 100 81 9.5 60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8
55 42 6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	70 56 7 46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	85 69 8 52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39	100 81 9.5 60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5 x 0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39
6.5 32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	7 46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	8 52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5 x 0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	9.5 60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
32.5 4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5 x 0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	46 4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	52 4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5 x 0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	60 4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
4 x Ø 6.6 15 55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	4 x Ø 9 18 70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	4 x Ø 11 21.5 85 69 25 143 185 208 37 49 98 47.5 83 M5 x 0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	4 x Ø 13.5 30 100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
55 42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	70 56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 0 39 92.5 2.7	85 69 25 143 185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	100 81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
42 15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	56 20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 9 39 92.5 2.7	69 25 143 185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	81 30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
15 80 106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	20 116 150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	25 143 185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	30 163 208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
106 120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	150 171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5	185 208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	208 238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
120 23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	171 33 39.5 81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	208 37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	238.8 43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
23.5 29 59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	33 39.5 81.5 37.5 68.5 M5×0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	37 49 98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	43.5 60.5 114 57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39
59.5 27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	81.5 37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	98 47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	114 57.5 97.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39
27.5 50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	37.5 68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	47.5 83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	57.5 97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
50.5 M5x0.5 7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	68.5 M5x0.5 9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	83 M5x0.5 11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	97.5 M5x0.5 14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
7.5 30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	9.7 41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	11.6 46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	14.5 58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
30 39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	41.9 49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	46 55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	58.3 68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
39 approx. 60 32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	49 approx. 60 43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	55 approx. 60 44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	68.5 approx. 60 52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
32 38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	43 49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	44.5 50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	52.5 58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
38 G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	49 G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	50.5 G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	58.5 G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
G1/8 6 L Ø 30 f7 Ø 29.8 Ø 29.5	G1/8 8 S Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	G1/4 10 L Ø 52 f7 Ø 51.8 Ø 39 113	G1/4 10 L Ø 65 f7 Ø 64.8 Ø 39 128
Ø 30 f7 Ø 29.8 Ø 29.5	Ø 42 f7 Ø 41.8 Ø 39 92.5 2.7	Ø 52 f7 Ø 51.8 Ø 39 113	Ø 65 f7 Ø 64.8 Ø 39 128
Ø 29.8 Ø 29.5	Ø 41.8 Ø 39 92.5 2.7	Ø 51.8 Ø 39 113	Ø 64.8 Ø 39 128
Ø 29.5	Ø 39 92.5 2.7	Ø 39 113	Ø 39 128
64	2.7		
2			4.5
2	2.7	3.5	4.5
21	30	33.5	41.5
3 54.5	4.5 55.5	5.2 56	7.5 58.2
65	86.5	93	111
12	16	17	20
9	13.5 13.5	15.5 15.5	22 22
14	20	25	32
41 . 0.00	2 55 ±0.02	68 ±0.02	12 80 ±0.02
41 ± 0.02 5 ± 0.05	0 ± 0.05	0.05 ± 0.02 0 ± 0.05	0 ± 0.02 0 ± 0.05
6.5	6.5	6.5	8
1.5 Ø 8 H7	1.5 Ø 8 H7	1.5 Ø 8 H7	1.5 Ø 10 H7
5.5	5.5	5.5	7
Ø 6 f7	Ø 6 f7	Ø 6 f7	Ø 6 f7
4x7.5 deep Ø 13 f7	M4x7.5 deep Ø 13 f7	M4x7.5 deep Ø 13 f7	M4x7.5 deep Ø 13 f7
2	2	2	2
M4x6 deep	M4x6 deep	M4x6 deep	M4x6 deep
21 16	27 21.5	27 22.5	27 26.5
M5	M5	M5	M5
			15.2
			66.5 84
53	G1/4	G1/4	G1/4
53 M5			50 28
M5 30	40	50	55
M5	M12	M16	M16
M5 30 12.5 25 M8	∩ A		0.8 51.5
M5 30 12.5 25 M8 0.8			18
M5 30 12.5 25 M8	min. 41.5 14.3	14.8	
M5 30 12.5 25 M8 0.8 min. 31.5 10.6 23.4	min. 41.5 14.3 30.7	14.8 31.9	37.5
M5 30 12.5 25 M8 0.8 min. 31.5 10.6 23.4 max. Ø 4	min. 41.5 14.3 30.7 max. Ø 5.5	14.8 31.9 max. Ø 5.5	37.5 max. Ø 5.5
M5 30 12.5 25 M8 0.8 min. 31.5 10.6 23.4	min. 41.5 14.3 30.7 max. Ø 5.5 2.5 – 0.5 7	14.8 31.9	37.5
M5 30 12.5 25 M8 0.8 min. 31.5 10.6 23.4 max. Ø 4 2.5 – 0.5	min. 41.5 14.3 30.7 max. Ø 5.5 2.5 – 0.5	14.8 31.9 max. Ø 5.5 2.5 – 0.5	37.5 max. Ø 5.5 2.5 – 0.5
	M5 30 12.5 25 M8	38.6 50.9 53 73 M5 G1/4 30 40 12.5 20 25 40 M8 M12 0.8 0.8	38.6 50.9 55.1 53 73 77 M5 G1/4 G1/4 30 40 50 12.5 20 25 25 40 50 M8 M12 M16 0.8 0.8 1 min. 31.5 min. 41.5 min. 43.5 10.6 14.3 14.8

Calculations • Clamping force diagrams Code for part numbers • Accessories

Calculations

- 1. Length L of clamping lever is known
- 1.1 Admissible operating pressure

.1 Admissible operating pressure
$$p_{adm} = \frac{B}{\frac{C}{L} + 1} \le 250 \text{ bar} \qquad [bar]$$
2 Effective elamping force

1.2 Effective clamping force

$$p_{adm} > 250 \text{ bar } \rightarrow \text{Fsp} = \frac{A}{L} * 250 \text{ [kN]}$$

$$p_{adm} < 250 \text{ bar } \rightarrow \text{Fsp} = \frac{A}{L} * p_{adm} \text{ [kN]}$$

2. Min. length of clamping lever

$$L_{min.} = \frac{C}{\frac{B}{p} - 1}$$
 [mm]

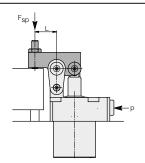
L, L_{min.} = Length of clamping lever [mm] p, p_{adm.} = Operating pressure

A, B, C, = Constants as per chart

Example 1: Hinge clamp 1825111

Operating pressure 200 bar Standard clamping lever L = 29 mm

$$F_{Sp} = \frac{A}{L} * p = \frac{0.449}{29} * 200 = 3.1 \text{ kN}$$


Example 2: Hinge clamp 1825110 Operating pressure 200 bar

Min. length of clamping lever

$$L_{min} = \frac{C}{\frac{B}{p} - 1} = \frac{22.325}{\frac{442.45}{200} - 1} = 18.4 \text{ mm}$$

Effective clamping force

$$F_{Sp} = \frac{A}{L} * p = \frac{0.449}{18.4} * 200 = 4.9 \text{ kN}$$

Con	S	ta	n	t
		-	_	•

	18251	18252	18253	18254
Α	0.449	1.54	2.827	5.193
Α*	0.386	1.45	2.728	5.076
В	442.45	448.42	429.34	429.75
B*	514.86	475.83	444.98	420.08
С	22.325	31.35	35.15	43.5

A*, B* for version with switch rod

Example 3: Hinge clamp 1825210

Special clamping lever L = 30 mmAdmissible operating pressure

$$p_{adm} = \frac{B}{\frac{C}{L} + 1} = \frac{\frac{448.42}{31.35}}{\frac{30}{30} + 1} = 219 \text{ bar}$$

Effective clamping force
$$F_{Sp} = \frac{A}{L} * p_{adm} = \frac{1.54}{30} * 219 = 11.25 \text{ kN}$$

Example 4: Hinge clamp 1825310

Special clamping lever L = 118 mm

(without proximity switch)

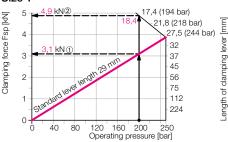
0 = without clamping lever

P = mounted position monitoring, pneumatic

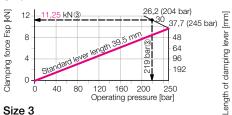
1 = clamping levers with swivel contact bolt
2 = long clamping lever, unmachined Material: C45 + C (1.0503)

Admissible operating pressure

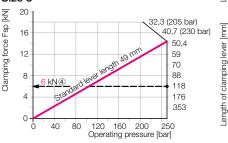
$$p_{\text{adm}} = \frac{B}{\frac{C}{L} + 1} = \frac{429.34}{\frac{35.15}{118} + 1} = 330.8 > 250 \text{ bar}$$

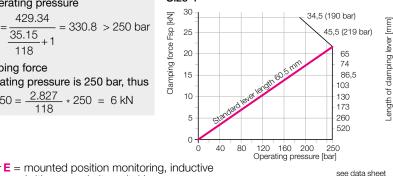

Effective clamping force

The max. operating pressure is 250 bar, thus

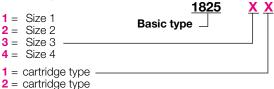

$$F_{Sp} = \frac{A}{L} * 250 = \frac{2.827}{118} * 250 = 6 \text{ kN}$$

Clamping force diagrams


Size 1


Size 2

Size 3



Size 4

see data sheet

Code for part numbers

2 = cartridge type

with extended piston rodo 3 = pipe thread at the back / plug-type connector

4 = pipe thread at the back / plug-type connector with extended piston rod >

- 5 = pipe threads at three sides
- 6 = pipe threads at three sides
- with extended piston rod >
- ♦ A prerequisite for mounted position monitoring (addition: E or P)

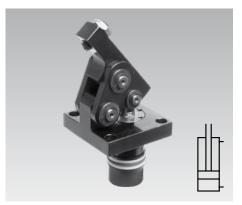
Accessories	Size	1	2	3	4
Intermediate plate					
(not for cartridge-type version)		3456449*)	3456 468 *)	3456489*)	3456534*)
Plug-type connector		9210145	9210145	9210145	9210132
Plug, flush screwable with hexagon soc	cket	0361986	0361 986	0361 987	0361 987
Screw plug with hexagon head		3610047	3610047	3300821	3300821
Pneumatic position monitoring, complete	**)	0353845	0353853	0353855	0353962
Weight	[kg]	0.18	0.42	0.46	0.74
Inductive position monitoring,					
(without inductive proximity switches) **	()	0353846	0353854	0353856	0353963
Weight	[kg]	0.26	0.62	0.65	0.58
Inductive proximity switch		3829198	3829198	3829198	3829 198
Right angle plug with cable 5 m					
for inductive proximity switch		3829099	3829099	3829 099	3829099
*) on request					
**) Only mountable at 1825 X2X, -X4X, -X	(6X				

Important note

Longer special clamping levers have a higher weight. Therefore the flow rate has to be considerably reduced to avoid damage of the mechanics in the stroke end positions.

A flow rate throttling always has to be effected in the supply line to the hinge clamp.

Technical characteristics for inductive proximity switches 3829198


proximity divitorios sozo is	•
Operating voltage UB	1030 V DC
Switching function	Interlock
Output	PNP
Material of housing	steel, corrosion
waterial of floading	resistant
Protection as per DIN 40050	IP 67
Ambient temperature	-25+70 °C
Type of connection	Plug S49 M8x1
LED function display	yes
Constant current max.	100 mA
Rated operating distance	0.8 mm
Protected against short circuits	yes

ROEMHELD North America

Mini Hinge Clamp

with metallic wiper edge, double acting, max. operating pressure 250 bar

Application

The mini hinge clamp is a low-cost hydraulic clamping element for thin-walled workpieces and reduced space.

The special kinematics allow clamping nearly without side loads of workpieces which are very sensitive against deformation.

wider than the clamping lever is sufficient as clamping surface.

Description

When pressurising the element, the piston moves upwards and swivels the clamping lever over the hinges forwards and at the same time downwards onto the workpiece. The piston force is deviated by 180° and is available as clamping force with virtually no loss of efficiency.

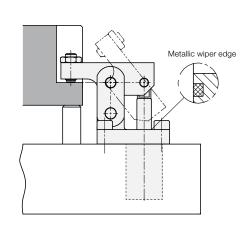
During unclamping the clamping lever with swivel contact bolt will be swivelled behind the front edge of the flange, thereby unimpeded loading and unloading of the workpiece is possible.

Workpieces which are very sensitive against deformation are clamped nearly without cross loads, if the clamping surface is at the height of the bearing pins of the clamping lever (34 mm above the flange surface, see page 2).

The optionally available long clamping lever is provided for customer-specific adaptations.

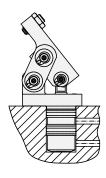
Important notes

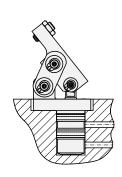
Hinge clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil.


Hinge clamps can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces. Considerable injuries can be caused to fingers during clamping and unclamping in the effective area of the clamping lever.

The manufacturer of the fixture or the machine is obliged to provide effective protective

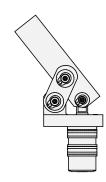
Hinge clamps have to be checked regularly on contamination by swarf and have to be cleaned. Operating conditions, tolerances and other data see data sheet A 0.100.


Advantages


- Compact design
- Body partially recessible
- Oil supply through drilled channels
- Unimpeded loading and unloading of the fixture when using clamping levers with swivel contact bolt
- Clamping lever can be swivelled into small recesses
- Clamping possible without side loads
- Two different clamping levers are available
- Long clamping lever adaptable to the work-
- Lever mechanism easy to clean
- Standard metallic wiper edge
- Standard FKM seals
- Mounting position: any

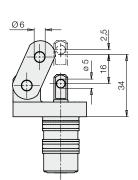
A clamping recess in the workpiece a little bit Installation and connecting possibilities Cartridge type

for horizontally-drilled channels



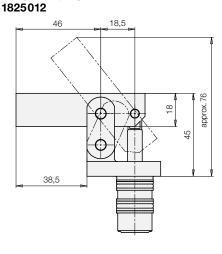
Options for clamping levers Clamping lever with swivel contact bolt

Long clamping lever


without clamping lever

Dimensions Technical data

Without clamping lever


1825010

Length of clamping lever ideal clamping height 33 8 9 22 up to 3 Ø 20 f7

Clamping lever with contact bolt

1825011

Long clamping lever

4,25 31.5

Technical of	data		
Clamping for	orce	[kN]	2.2
Max. opera	ating pressure	[bar]	250
Min. operat	ing pressure	[bar]	10
Oil volume	Clamping	[cm ³]	2.1
	Unclamping	[cm³]	1.2
Max. flow r	ate		
	Clamping	[cm ³ /s]	15
	Unclamping	[cm ³ /s]	8
Weight	1825010	[kg]	0.23
	1825011	[kg]	0.28
	1825012	[kq]	0.32

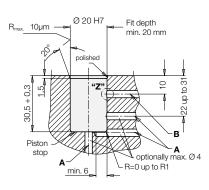
Calculations

- 1. Length L of clamping lever is known
- 1.1 Admissible operating pressure

$$p_{adm} = \frac{B}{\frac{C}{I} + 1} \le 250$$
 [bar]

1.2 Effective clamping force
$$p_{adm} > 250 \text{ bar } \rightarrow F_{Sp} = \frac{A}{L} * 250 \quad \text{[kN]}$$

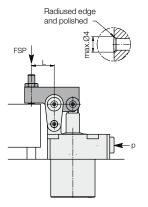
$$p_{adm} < 250 \text{ bar } \rightarrow F_{Sp} = \frac{A}{L} * p_{adm} \quad \text{[kN]}$$

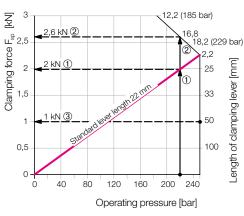

2. Min. length of clamping lever

$$L_{min.} = \frac{C}{\frac{B}{D} - 1}$$
 [mm]

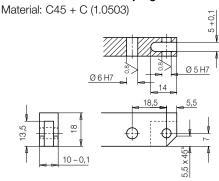
L, $L_{min.}$ = Length of clamping lever [mm] p, p_{adm} = Operating pressure [bar] A, B, C = Constants as per chart

Constant	18250
Α	0.199
В	449.716
С	17.575


Location hole


26

A = Clamping **B** = Unclamping


DETAIL "Z'

Clamping force diagram

Connecting dimensions for self-manufactured clamping levers

Example 1: Hinge clamps 1825 011 Operating pressure 220 bar Standard clamping lever L = 22 mm

Effective clamping force
$$F_{Sp} = \frac{A}{L} * p = \frac{0.199}{22} * 220 = 2 \text{ kN}$$

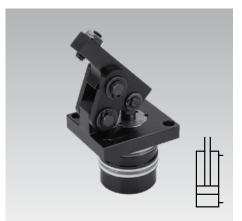
Example 2: Hinge clamps 1825010 Operating pressure 220 bar

Min. length of clamping lever
$$L_{min.} = \frac{C}{\frac{B}{p} - 1} = \frac{17.575}{\frac{449.718}{220} - 1} = 16.8 \text{ mm}$$

Effective clamping force
$$F_{Sp} = \frac{A}{L} * p = \frac{0.199}{16.8} * 220 = 2.6 \text{ kN}$$

Example 3: Hinge clamps 1825010 Special clamping lever L = 50 mm

Admissible operating pressure
$$p_{\text{adm}} = \frac{B}{\frac{C}{L} + 1} = \frac{449.716}{\frac{17.575}{50} + 1} = 332 > 250 \text{ bar}$$


Effective clamping force

The max. operating pressure is 250 bar, thus
$$F_{Sp} = \frac{A}{L} * 250 = \frac{0.199}{50} * 250 = 1 \text{ kN}$$

Mini Hinge Clamps 70 bar

with metallic wiper edge, double acting, max. operating pressure 70 bar

Application

The mini hinge clamp is a low-cost hydraulic clamping element for thin-walled workpieces and reduced space.

The special kinematics allow clamping nearly without side loads of workpieces which are very sensitive against deformation.

A clamping recess in the workpiece a little bit wider than the clamping lever is sufficient as clamping surface.

This line is designed for the direct connection to the machine hydraulics with a max. operating pressure of 70 bar.

Description

When pressurising the element, the piston moves upwards and swivels the clamping lever over the hinges forwards and at the same time downwards onto the workpiece. The piston force is deviated by 180° and is available as clamping force with virtually no loss of efficiency. During unclamping the clamping lever with swivel contact bolt will be swivelled behind the front edge of the flange, thereby unimpeded loading and unloading of the workpiece is possible.

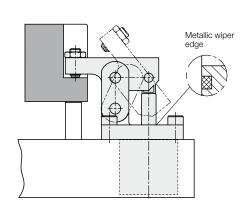
Workpieces which are very sensitive against deformation are clamped nearly without cross loads, if the clamping surface is at the height of the bearing pins of the clamping lever (34 mm above the flange surface, see page 2).

The optionally available long clamping lever is provided for customer-specific adaptations.

Important notes

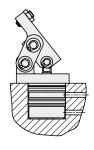
Hinge clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil.

Hinge clamps can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

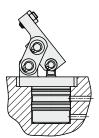

Considerable injuries can be caused to fingers during clamping and unclamping in the effective area of the clamping lever.

The manufacturer of the fixture or the machine is obliged to provide effective protective measures.

Hinge clamps have to be checked regularly on contamination by swarf and have to be cleaned. Operating conditions, tolerances and other data see data sheet A 0.100.


Advantages

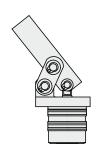
- High clamping force at low operating pressure
- Compact design
- Body partially recessible
- Oil supply through drilled channels
- Unimpeded loading and unloading of the fixture when using clamping levers with swivel contact bolt
- Clamping possible without side loads
- Two different clamping levers are available
- Long clamping lever adaptable to the workpiece
- Lever mechanism easy to clean
- Standard metallic wiper edge
- Standard FKM seals
- Mounting position: any



Installation and connecting possibilities Cartridge type

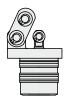
for horizontally-drilled channels

Application example

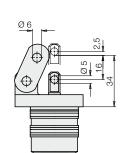


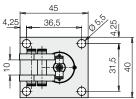
Options for clamping levers

Clamping lever with swivel contact bolt

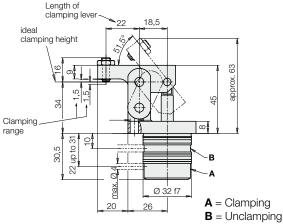


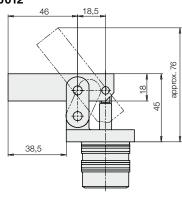
Long clamping lever


without clamping lever



Dimensions Technical data


Without clamping lever 1826010


Clamping lever with contact bolt 1826011

I enath of

Long clamping lever

1826012

[kN]

[bar]

[bar]

[cm³] [cm³]

[cm³/s]

[cm³/s]

[kg]

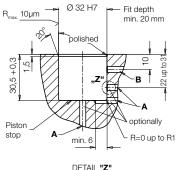
2.3

70

10

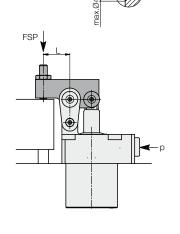
7.7

6.8


15

15

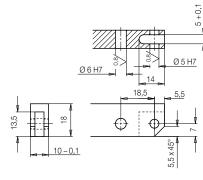
0.30


0.35

0.39

Radiused edge

and polished



Location hole

self-manufactured clamping levers

Connecting dimensions for

1826011 1826012

Technical data Clamping force

Max. flow rate

Weight

Max. operating pressure

Min. operating pressure

Oil volume Clamping Unclamping

Calculations 1. Length L of clamping lever is known

1.1 Admissible operating pressure

Clamping

1826010

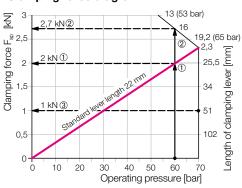
Unclamping

$$p_{adm} = \frac{B}{\frac{C}{L} + 1} \le 70$$
 [bar]

1.2 Effective clamping force

$$p_{adm} > 70 \text{ bar } \rightarrow F_{Sp} = \frac{A}{L} * 70 \text{ [kN]}$$

$$p_{adm} < 70 \text{ bar } \rightarrow F_{Sp} = \frac{A}{L} * p_{adm}$$
 [kN]


2. Min. length of clamping level

L_{min.} =
$$\frac{C}{\frac{B}{p} - 1}$$
 [mm

L, $L_{min.}$ = Length of clamping lever [bar] p, p_{adm} = Operating pressure A, B, C = Constants as per chart

Constant	182601
Α	0.73
В	125.92
С	17.575

Clamping force diagram

Example 1: Hinge clamps 1826011 Operating pressure 60 bar Standard clamping lever L = 22 mm

Effective clamping force
$$F_{Sp} = \frac{A}{L} * p = \frac{0.73}{22} * 60 = 2 \text{ kN}$$

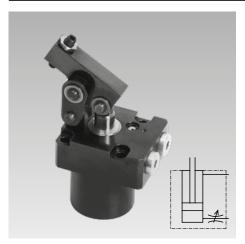
Example 2: Hinge clamps 1826010 Operating pressure 60 bar

Min. length of clamping lever
$$L_{min.} = \frac{C}{\frac{B}{p} - 1} = \frac{17.575}{\frac{125.92}{60} - 1} = 16 \text{ mm}$$

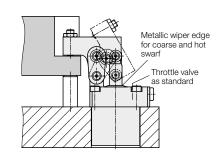
Effective clamping force
$$F_{Sp} = \frac{A}{L} * p = \frac{0.73}{16} * 60 = 2.7 \text{ kN}$$

19,2 (65 bar) **Example 3:** Hinge clamps 1826010 Special clamping lever L = 51 mm

Admissible operating pressure
$$p_{\text{adm}} = \frac{B}{\frac{C}{L} + 1} = \frac{125.92}{\frac{17.575}{51} + 1} = 93.6 > 70 \text{ bar}$$


Effective clamping force

The max. operating pressure is 70 bar, thus $F_{Sp} = \frac{A}{L} * 70 = \frac{0.73}{51} * 70 = 1 \text{ kN}$


Hinge Clamps 70 bar

with throttle valve, metallic wiper edge and optional position monitoring double acting, max. operating pressure 70 bar

Advantages

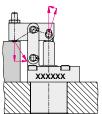
- High clamping force in the low-pressure range
- Very short clamping time (min. 0.5 s)
- Throttle valve as standard, easily adjustable from the top
- Compact design partially recessible
- Lever bolt plain bearing
- 3 clamping directions selectable
- Clamping possible without side loads
- Clamping lever can be swivelled into small recesses
- Long clamping lever adaptable to the workpiece contour
- FKM wiper protected by metallic wiper edge
- Position monitoring available as accessory
- Mounting position: any

Application

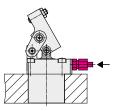
Hydraulic hinge clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

A clamping recess in the workpiece a little bit wider than the clamping lever is sufficient as clamping surface.

The special kinematics allow clamping without side loads of workpieces which are very sensitive against deformation.

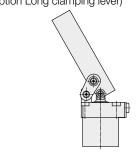

This series with an operating pressure of 70 bar is designed for the direct connection to the low-pressure hydraulics of machine tools.

In combination with the optional pneumatic or electrical position monitorings hinge clamps are particularly suitable for:

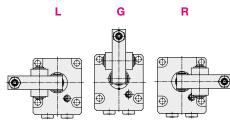

- Automatic manufacturing systems with very short cycle times
- Clamping fixtures with workpiece loading by handling systems
- Transfer lines
- Test systems for motors, gears and axes
- Assembly lines
- Special machine tools

Forces at the clamping point

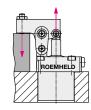
Conventional lever mechanism of other manufacturers



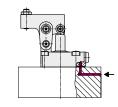
Installation and connecting possibilities Pipe thread

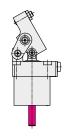

Versions

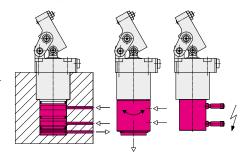
Without switch rod (Option Long clamping lever)



Clamping direction


Code letters


Lever mechanism without side loads ROEMHELD system


Drilled channels

With switch rod

Accessories – position monitoring pneumatic electrical

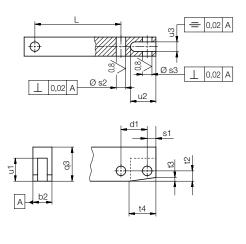
Description

The hinge clamp is a double acting hydraulic cylinder with integrated clamping lever. When pressurising the element, the piston moves upwards and swivels the clamping lever over the hinges forwards and at the same time downwards onto the workpiece. The piston force is deviated by 180° and, depending on the lever length, the force is available as clamping force (see page 4). The kinematics are so designed that no side loads enter into the workpiece, if the clamping surface is at the same height as the centre of rotation of the clamping lever (see comparison "Forces at the clamping point").

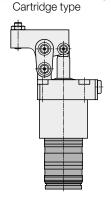
The 3 available clamping directions (L, G, R) make it easier to adapt to the workpiece shape or the hydraulic connectivity.

All sizes are optionally available with switch rod for external position monitoring.

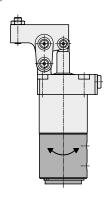
Electrical and pneumatic position monitorings for the clamping and unclamping position are available as accessories.

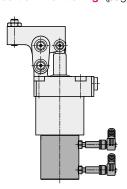

Important notes see page 6.

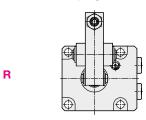
Versions: without / with switch rod **Dimensions • Accessories**

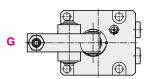

Without switch rod With switch rod 1826G7X31 1826G7X40 Clamping lever with contact bolt Without clamping lever Thread connection Screw plugs and O-rings are included in the delivery Important note: Both O-rings must be inserted also for pipe thread connection. аЗ Ø 11 Throttle valve SW 1.5 With switch rod 1826G7X41 Clamping lever with contact bolt **A** = Clamping **B** = Unclamping Connecting scheme Machining also required for pipe thread connection! Workpiece

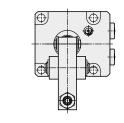
Bore holes not required for pipe thread connection


Connecting dimensions for self-manufactured clamping levers


Accessories Pneumatic position monitoring (page 5)

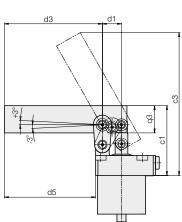

Pipe thread connection


Inductive position monitoring (page 6)



Clamping direction

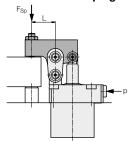
Use fixing thread screw material 10.9



X =code letter for part no.

With switch rod 1826G7X42

Clamping lever, long



Technical data

Piston force Piston Ø Piston rod Ø Piston stroke Piston area Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 – 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ±0.1 h ho hu h1 h2 h3 h4 j1 j2	elength of clamping lever d2 without switch rod with switch rod with switch rod with switch rod clamping without switch rod with switch rod unclamping clamping without switch rod unclamping unclamping without switch rod with switch rod unclamping	[kN] [kN] [kN] [kN] [mm] [mm] [mm] [cm²] [cm²] [cm³] [cm³] [cm³] [cm³] [cm³] [cm] [mm] [mm] [mm] [mm] [mm] [mm] [mm	2.6 2.3 3.4 3 25 12 18.7 4.9 4.4 3.77 9.2 8.3 7.1 16 55 35 5 5.22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5	3.5 3.1 4.9 4.3 30 14 20.7 7.06 6.28 5.52 14.7 13 11.45 25 60 40 5 5.56 17 41 50 40 40 12 14 20.8 68.5 85.5 152.8 18.5 18.5 23.5	3 4.4 4 6.7 6.1 35 14 24 9.62 8.83 8.08 23.1 21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21 29	4 7.3 6.8 10.6 9.8 44 16 26 15.2 14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5 32	12.1 11.5 17.2 16.4 56 22 32 24.6 23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Piston force Piston Ø Piston rod Ø Piston stroke Piston area Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	with switch rod without switch rod with switch rod clamping without switch rod with switch rod unclamping clamping without switch rod unclamping without switch rod with switch rod	[kN] [kN] [kN] [kN] [mm] [mm] [cm²] [cm²] [cm³] [cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	2.3 3.4 3 25 12 18.7 4.9 4.4 3.77 9.2 8.3 7.1 16 55 35 522.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	3.1 4.9 4.3 30 14 20.7 7.06 6.28 5.52 14.7 13 11.45 25 60 40 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	4 6.7 6.1 35 14 24 9.62 8.83 8.08 23.1 21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	6.8 10.6 9.8 44 16 26 15.2 14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	11.5 17.2 16.4 56 22 32 24.6 23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5 39
Piston force Piston Ø Piston rod Ø Piston stroke Piston area Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 – 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	without switch rod with switch rod clamping without switch rod with switch rod unclamping clamping without switch rod with switch rod with switch rod	[kN] [kN] [kN] [mm] [mm] [mm] [cm²] [cm²] [cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	3.4 3 25 12 18.7 4.9 4.4 3.77 9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20 20 20 20 20 20 20 20 20 20	4.9 4.3 30 14 20.7 7.06 6.28 5.52 14.7 13 11.45 25 60 40 5 5 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	6.7 6.1 35 14 24 9.62 8.83 8.08 23.1 21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	10.6 9.8 44 16 26 15.2 14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	17.2 16.4 56 22 32 24.6 23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Piston Ø Piston rod Ø Piston stroke Piston area Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 – 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	with switch rod clamping without switch rod with switch rod unclamping clamping without switch rod with switch rod with switch rod	[kN] [mm] [mm] [mm] [cm²] [cm²] [cm³] [cm³,[cm³,[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	3 25 12 18.7 4.9 4.4 3.77 9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	4.3 30 14 20.7 7.06 6.28 5.52 14.7 13 11.45 25 60 40 5 5 5.6 17 41 50 40 40 12 14 20.8 68.5 85.5 152.8 18.5	6.1 35 14 24 9.62 8.83 8.08 23.1 21.2 19.4 40 66 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21	9.8 44 16 26 15.2 14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	16.4 56 22 32 24.6 23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5 39
Piston Ø Piston rod Ø Piston stroke Piston stroke Piston area Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 – 0.05 b3 c c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	clamping without switch rod with switch rod unclamping clamping without switch rod with switch rod	[mm] [mm] [mm] [mm] [cm²] [cm²] [cm³] [cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	25 12 18.7 4.9 4.4 3.77 9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	30 14 20.7 7.06 6.28 5.52 14.7 13 11.45 25 60 40 5 25 5.6 17 41 50 40 40 25 5.5 5.6 17 41 50 40 40 5 5 5.5 5 5 5 5 5 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35 14 24 9.62 8.83 8.08 23.1 21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	44 16 26 15.2 14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	56 22 32 24.6 23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5 39
Piston rod Ø Piston stroke Piston area Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 – 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	without switch rod with switch rod unclamping clamping without switch rod with switch rod	[mm] [mm] [cm²] [cm²] [cm³] [cm³] [cm³] [cm³] [cm³] [cmn] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [12 18.7 4.9 4.4 3.77 9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	14 20.7 7.06 6.28 5.52 14.7 13 11.45 25 60 40 5 25 5.6 17 41 50 40 40 25 5.5 5.6 17 41 50 40 40 12 14 20.8 68.5 85.5 85.5 85.5	14 24 9.62 8.83 8.08 23.1 21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21	16 26 15.2 14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	22 32 24.6 23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Piston area Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	without switch rod with switch rod unclamping clamping without switch rod with switch rod	[cm²] [cm²] [cm³] [cm³] [cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	4.9 4.4 3.77 9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	7.06 6.28 5.52 14.7 13 11.45 25 60 40 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 85.5 152.8 18.5	9.62 8.83 8.08 23.1 21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	15.2 14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	24.6 23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ±0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	without switch rod with switch rod unclamping clamping without switch rod with switch rod	[cm²] [cm²] [cm³] [cm³] [cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	4.4 3.77 9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1	6.28 5.52 14.7 13 11.45 25 60 40 5 5 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 85.5 152.8 18.5	8.83 8.08 23.1 21.2 19.4 40 66 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	with switch rod unclamping clamping without switch rod with switch rod	[cm²] [cm²] [cm³] [cm³] [cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	4.4 3.77 9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1	6.28 5.52 14.7 13 11.45 25 60 40 5 5 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 85.5 152.8 18.5	8.83 8.08 23.1 21.2 19.4 40 66 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	14 13.1 39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	23.4 20.8 78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Oil volume Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 – 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3	clamping without switch rod with switch rod	[cm³] [cm³] [cm³] [cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	9.2 8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1	14.7 13 11.45 25 60 40 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	23.1 21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	39.6 36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	78.8 75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 – 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1	without switch rod with switch rod	[cm³] [cm³/s] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	8.3 7.1 16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	13 11.45 25 60 40 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	21.2 19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97	36.6 34.3 75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	75.2 66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ±0.1 h ho hu h1 h2 h3 h4 j1 j2 j3		[cm³] [cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	7.1 16 55 35 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1	11.45 25 60 40 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	19.4 40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6	34.3 75 82 56 7 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	66.7 150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Max. flow rate a a1 a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ±0.1 h ho hu h1 h2 h3 h4 j1	unclamping	[cm³/s] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [m	16 55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5	25 60 40 5 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	40 66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21	75 82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	150 96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
a a a a a a a a a a a a a a a a a a a		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	55 35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5	60 40 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	66 46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21	82 56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	96 68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
a1 a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø 07 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1 j2 j3		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	35 5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	40 5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	46 5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21	56 7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	68 9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
a2 a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5 22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	5 25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	5.5 28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21	7 35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	9 43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
a3 Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	22.5 5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	25 5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	28.5 6.8 17 47 57 46 16 17 22 77 97 157.6 21	35 9 20 57 70 56 19 20 26 93 116.5 204 24.5	43 11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
Ø a4 a5 a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h h h h h h h h h h h h h h h h		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	5.6 18 37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	5.6 17 41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	6.8 17 47 57 46 16 17 22 77 97 157.6 21	9 20 57 70 56 19 20 26 93 116.5 204 24.5	11 20 70.3 86 68 22 24 32 110 138.9 226.8 30.5
a6 b b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	37.5 45 35 12 15.5 22 63.5 79.8 129.1 16.5	41 50 40 12 14 20.8 68.5 85.5 152.8 18.5	47 57 46 16 17 22 77 97 157.6 21	57 70 56 19 20 26 93 116.5 204 24.5	70.3 86 68 22 24 32 110 138.9 226.8 30.5
b bb b		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	45 35 12 15.5 22 63.5 79.8 129.1 16.5 20	50 40 12 14 20.8 68.5 85.5 152.8 18.5	57 46 16 17 22 77 97 157.6 21	70 56 19 20 26 93 116.5 204 24.5	86 68 22 24 32 110 138.9 226.8 30.5
b1 b2 - 0.05 b3 c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	35 12 15.5 22 63.5 79.8 129.1 16.5 20	40 12 14 20.8 68.5 85.5 152.8 18.5	46 16 17 22 77 97 157.6 21	56 19 20 26 93 116.5 204 24.5	68 22 24 32 1110 138.9 226.8 30.5
b2 - 0.05 b3 c c c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 f1 G Ø g1 max. Ø g2 ± 0.1 h h h h h h h h h h h h h h h h h h h		[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	12 15.5 22 63.5 79.8 129.1 16.5 20	12 14 20.8 68.5 85.5 152.8 18.5	16 17 22 77 97 157.6 21	19 20 26 93 116.5 204 24.5	22 24 32 110 138.9 226.8 30.5
b3 c c t1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h h h h h h h h h h h 1 h 1 2 h 3 h 4 i 1 2 i 3		[mm] [mm] [mm] [mm] [mm] [mm] [mm]	15.5 22 63.5 79.8 129.1 16.5 20	14 20.8 68.5 85.5 152.8 18.5	17 22 77 97 157.6 21	20 26 93 116.5 204 24.5	24 32 110 138.9 226.8 30.5 39
c c1 c2 c3 c3 c4 c4 c5 c5 c6 c7		[mm] [mm] [mm] [mm] [mm] [mm]	22 63.5 79.8 129.1 16.5 20	20.8 68.5 85.5 152.8 18.5	22 77 97 157.6 21	26 93 116.5 204 24.5	32 110 138.9 226.8 30.5
c1 c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h1 h2 h3 h4 j1 j2		[mm] [mm] [mm] [mm] [mm]	63.5 79.8 129.1 16.5 20	68.5 85.5 152.8 18.5	77 97 157.6 21	93 116.5 204 24.5	110 138.9 226.8 30.5 39
c2 c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h1 h2 h3 h4 j1		[mm] [mm] [mm] [mm] [mm]	79.8 129.1 16.5 20	85.5 152.8 18.5	97 157.6 21	116.5 204 24.5	138.9 226.8 30.5 39
c3 d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h h1 h2 h3 h4 j1		[mm] [mm] [mm] [mm]	129.1 16.5 20	152.8 18.5	157.6 21	204 24.5	226.8 30.5 39
d1 d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1		[mm] [mm] [mm]	16.5 20	18.5	21	24.5	30.5 39
d2 d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1		[mm] [mm]	20				39
d3 d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h 1 1 2 h 3 h 4 j 1 j 2 j 3		[mm]		20.0	20		
d4 d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h1 h2 h3 h4 j1			00	110.5	108	148.5	159.5
d5 d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h ho hu h1 h2 h3 h4 j1		[]	20	23	29.5	31.5	37.5
d6 Ø d7 max. d8 min. f1 G Ø g1 max. Ø g2 ± 0.1 h h h h 11 12 13 14 15 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18		[mm]	82	104	100.5	138	147
Ø d7 max. d8 min. if Ø g1 max. Ø g2 ± 0.1 h ho ho hu 11 h2 h3 h4 11		[mm]	14	17	21.5	21.5	26.5
f1 G Ø g1 max. Ø g2 ±0.1 h ho hu h1 h2 h3 h4 j1 j2		[mm]	4	4	4	6	6
G Ø g1 max. Ø g2 ± 0.1 h h ho hu h1 h2 h3 h4 j1		[mm]	3	4	7	7	8
Ø g1 max. Ø g2 ±0.1 h ho hu h1 h2 h3 h4 j1 j2		[mm]	33,5	39,5	42,5	47	55
Ø g2 ±0.1 h ho hu h1 h2 h3 h4 j1 j2 j3			G1/8	G1/8	G1/8	G1/4	G1/4
h ho ho hu hi		[mm]	40	48	54	64	79
ho hu h1 h2 h3 h4 j1 j2		[mm]	39	47	53	63	78
hu h1 h2 h3 h4 j1 j2 j3	ideal clamping point upper end of the clamping range	[mm]	48.5 1	51.5 1.2	56 1.5	67 1.8	79 2
h1 h2 h3 h4 j1 j2 j3	lower end of the clamping range	[mm] [mm]	1.1	1.3	1.5	1.7	2.1
h2 h3 h4 j1 j2 j3	stroke up to the ideal clamping point	[mm]	15.7	17.7	21	23	29
h3 h4 j1 j2 j3	stroke up to the end of the clamping stroke	[mm]	3	3	3	3	3
h4 j1 j2 j3	of one up to the original or the claimping of one	[°]	57.6	58.6	60.4	57.6	57.4
j1 j2 j3	unclamping position	[mm]	60.2	68.2	72.6	78.1	93.6
j2 j3		[mm]	12.5	12.8	14	14	14
		[mm]	20	22	23	30	38
k1	fixing thread		M5	M5	M6	M8	M10
		[mm]	22	24	28	36	45
k2		[mm]	25	28	30.5	36	42
Ø l1 f7		[mm]	8	10	10	12	12
12		[mm]	M5 x 15 deep 26	M6x11.5 deep 26	M6x11.5 deep 29	M8x16 deep 39	M8x16 deep 48
q1 q2		[mm] [mm]	14	16	29	25	30
q2 q3		[mm]	21.5	26	30	36.5	45
q4		[11111]	M6	M6	M8	M10	M12
ч⊤ r1		[mm]	0.4	0.4	0.4	0.4	0.4
r2		[mm]	7	9	9	11	12
s1		[mm]	5.5	6	6	7	10
Ø s2 H7		[mm]	6	8	8	10	14
Ø s3 H7		[mm]	6	6	7	8	12
t		[mm]	2.4	3.9	2.5	4	4.7
t2		[mm]	6.5	9	9	10.5	14
t3		[mm]	4	3	4.3	5.1	6.6
t4		[mm]	4	17	22	22	31
u1		[mm]	14.5	17.5	17.5	19	28
u2		[mm]	16	16.5	17	19	26
u3 +0.1 x1		[mm] [mm]	6.1 4	6.1 4	8.1	10.1 5	11.1 5
Weight		[kg]	1	1.2	1.5	2.6	4.5
Part no. without switch	h rod	ເ.ສາ			5	2.0	
without clamping lever			1826X7130	1826X7230	1826X7330	1826X7430	1826X7530
Clamping lever with conta			1826X7131	1826X7231	1826X7331	1826X7431	1826X7531
Clamping lever, long	act bolt		1826X7132	1826X7232	1826X7332	1826X7432	1826X7532
Part no. with switch ro			4000	4000	4000	40000	4000
without clamping lever			1826X7140	1826X7240	1826X7340	1826X7440	1826X7540
Clamping lever with conta	od		1826X7141	1826X7241	1826X7341	1826X7441	1826X7541
Clamping lever, long	od		1826X7142	1826X7242	1826X7342	1826X7442	1826X7542
Spare O-ring Part no.	od	[mm]	7x1.5	7x1.5	7x1.5 3000342	8x1.5 3000343	8x1.5 3000343
i artiiv.	od	[mm]	3000343			3000343	3000343
	od	[mm]	3000342	3000342 de letter see page			

Clamping force diagrams

Calculation of the clamping force

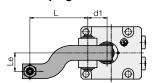
- 1. Length L of clamping lever is known

1.1 Admissible operating pressure
$$p = \frac{B}{(C/L) + 1} \le 70 \quad [bar]$$

1.2 Effective clamping force

$$(p_{adm} > 70 \text{ bar}) \rightarrow F_{sp} = \frac{A}{L} * 70 \text{ [kN]}$$

 $(p_{adm} > 70 \text{ bar}) \rightarrow F_{sp} = \frac{A}{L} * p_{adm} \text{ [kN]}$


2. Min. length of clamping lever

$$L_{\text{min.}} = \frac{C}{(B/p) - 1} \text{ [mm]}$$

L, L _{min.}	=	length of clamping lever	[mm]
p, p _{adm} .	=	operating pressure	[bar]
A, B, C,	=	constants as per chart	
A*, B* fo	r ve	ersion with switch rod	

1826	71	72	73	74	75
Α	0.73	1.18	1.82	3.35	6.76
A *	0.65	1.05	1.67	3.11	6.45
В	121.97	119.6	115.62	118.23	119.27
B*	135.89	134.4	125.9	127.73	125
С	14.85	16.65	18.9	22.05	27.45

Eccentric clamping lever

The diagrams show the admissible operating pressure for any combination of length L of clamping lever and the eccentricity Le.

$$P_{\text{adm}} = \frac{X * L}{(Y * Le) + L + Z} \quad \text{[bar]}$$

L = length of clamping lever

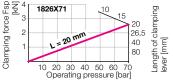
Le = eccentricity [mm]

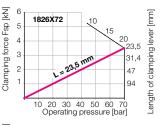
X, Y, Z = constant as per chart

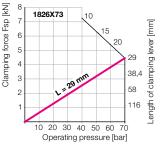
X* for version with switch rod

1826	71	72	73	74	75
X	127.77	125.12	120.69	123.6	124.75
X *	142.34	140.76	131.43	133.49	130.74
Υ	3.666	3.7	3.5	3.379	3.588
Z	16.5	18.5	21	24.5	30.5

Example: Hinge clamp 1826G72

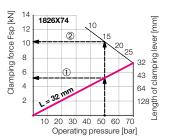

Special clamping lever L = 60 mm Eccentricity Le = 45 mm

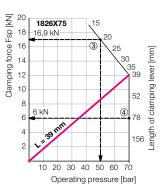

As per diagram: $p_{adm} = approx. 30 bar$


According to formula:
$$p_{adm} = \frac{X * L}{(y * Le) + L + Z} = \frac{125.12 * 60}{(3.7 * 45) + 60 + 18.5}$$

 $p_{adm} = 30.64 bar$

Effective clamping force (formula see above)
$$F_{Sp} = \frac{A}{L} * p_{adm} = \frac{1.18}{60} * 30.64 = 0.6 \text{ kN}$$


Example 1: Hinge clamp 1826G**74**32 p = 50 bar; L = 32 mm


Effective clamping force
$$F_{Sp} = \frac{A}{L} * p = \frac{3.35}{32} * 50 = 5.2 \text{ kN}$$

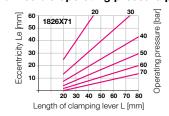
Example 2: Hinge clamp 1826G7432 p = 50 bar

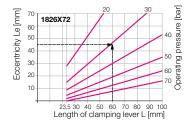
Min. length of clamping lever
$$L_{min} = \frac{C}{(B/p) - 1} = \frac{22.05}{(118.23/50) - 1} = 16 \text{ mm}$$

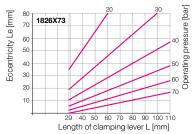
Effective clamping force
$$F_{Sp} = \frac{A}{L} * p = \frac{3.35}{16} * 50 = 10.4 \text{ kN}$$

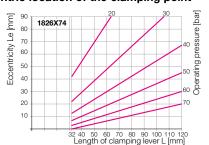
Example 3: Hinge clamp 1826G**75**32 Special clamping lever L = 20 mm

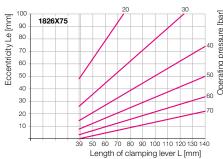
Admissible operating pressure
$$p_{adm} = \frac{B}{(C/L) + 1} = \frac{119.26}{(27.45/20) + 1} = 50.2 \text{ bar}$$


Effective clamping force
$$F_{Sp} = \frac{A}{L} * p_{adm} = \frac{6.76}{20} * 50.2 = 16.96 \text{ kN}$$


Example 4: Hinge clamp 1826G7532 Special clamping lever L = 78 mm


Admissible operating pressure
$$p_{adm} = \frac{B}{(C/L) + 1} = \frac{119.26}{(27.45/78) + 1} = 88.2 \text{ bar}$$


Effective clamping force The max. operating pressure is 70 bar, thus
$$F_{Sp} = \frac{A}{L} * 70 = \frac{6.76}{78} * 70 = 6 \text{ kN}$$


Admissible operating pressure p_{adm} at eccentric location of the clamping point

Important note

Depending on the eccentric load, there will be a one-sided wear of the bolts and an increasing torsion of the clamping lever around the longitudinal axis.

Recommendation: Regular visual inspection

Accessories Pneumatic position monitoring (not adjustable)

Application

The pneumatic position monitoring signals the following conditions by closing two bore holes:

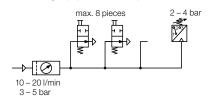
- 1. Piston retracted and clamping lever in offposition
- 2. Piston in clamping area and clamping lever in clamping position.

For each control function, a pneumatic line has to be provided at the clamping fixture.

Description

When moving to a switching position, the air pressure in the supply line increases and operates a differential pressure switch or an electropneumatic pressure switch.

Pneumatic port


Cartridge type

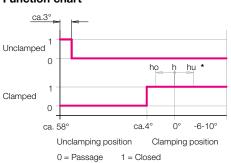
The hinge clamp with the mounted position monitoring and inserted O-rings is put into the location hole and immediately ready for use.

Mounting body

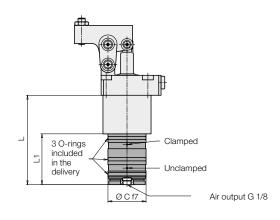
The mounting body is put onto the cartridgetype version and held by the supplied safety ring. The pneumatic ports M5 can be rotated by 360°.

Monitoring by pneumatic pressure switch

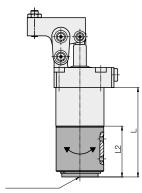
For the evaluation of the pneumatic pressure increase, standard pneumatic pressure switches can be used. With one pressure switch up to 8 position monitorings can be controlled (see circuit diagram).

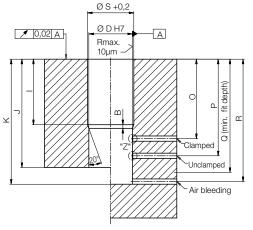

It has to be considered that process-safe functioning of pneumatic controls is only guaranteed with throttled air pressure and air flow rate.

Technical data

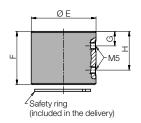

Connection	Drilled channels or threads M5
Nominal diameter	2 mm
Max. air pressure	10 bar
Range of operating pressure	35 bar
Differential pressure*) at	
3 bar system pressure	min. 1.5 bar
5 bar system pressure	min. 3.5 bar
Air volume **)	1020 l/min

- Minimum pressure difference, if one or several position monitorings are not operated.
- **) For measuring of the flow rate appropriate devices are available.


Function chart


Cartridge type

Pipe thread connection



Location hole

Radiused edge

Mounting body

Size		1	2	3	4	5
Ø A ±0.1	[mm]	39	47	53	63	78
В	[mm]	1.3	2	2	2	2
ØCf7	[mm]	38	42	42	45	45
Ø D H7	[mm]	38	42	42	45	45
ØE	[mm]	49	53	52.5	62.5	62.5
F	[mm]	40.3	46	50	54	60
G	[mm]	11	13	14	14	15
Н	[mm]	29.3	33	36	40	45
I +0.2	[mm]	34	40	43	47.5	55.5
J min.	[mm]	78	87	91	100	114
K min.	[mm]	84	95	100	109	123
L	[mm]	82.5	93.5	98.5	107	121.5
L1	[mm]	49	54	56	60	66.5
L2	[mm]	46.15	53.85	55.8	59.8	65.8
ØM	[mm]	4	4	4	4	4
ØN	[mm]	5	5	5	5	5
0	[mm]	46	52	55.5	60	70.6
Р	[mm]	65	74	80	86	100.5
Q min.	[mm]	77	85	90	98.5	113
R	[mm]	79.5	90.5	95.5	104	118.5
ØS max.	[mm]	40	48	54	64	79
Part no.						
Cartridge type		0353341	0353342	0353343	0353344	0353345

0353342A

0353343A

0353344A

for retrofitting of the cartridge type

0353341A

with 4 screws

Mounting body

0353345A

^{*} Dimensions see page 2 and 3

Accessories Electrical position monitoring • Important notes

Application

The electrical position monitoring signals the following conditions due to damping of two inductive proximity switches:

- 1. Piston retracted and clamping lever in off-position
- 2. Piston extended and clamping lever in off-position.

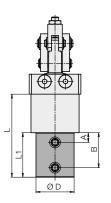
For each control function, an electrical line has to be provided at the clamping fixture.

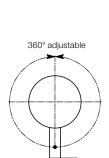
Description

The electrical position monitoring can be easily retrofitted at all hinge clamps with switch rod $(1826 \times 7X4 \times)$.

Included in our delivery are:

- 1 Signal sleeve with screw
- 1 Adapter with 4 countersunk screws
- 1 Control housing with 3 set screws
- 2 Inductive proximity switches with right angle plug (if ordered)


The signal sleeve is screwed onto the switch rod. The adapter is mounted with 4 countersunk screws at the bottom cover.

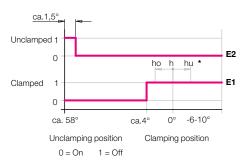

The control housing can be put onto the adapter in any angular position and locked with 3 set screws.

For information on adjustment of proximity switches, see operating manual.


Important notes

Inductive position monitorings are not suitable for the use in coolant and swarf areas. According to the corresponding application conditions, safety measures have to be planned and checked later

Possible position of the proximity switches



Four fixing screws included in our delivery

Technical data	
Operating voltage	1030 V DC
Max. residual ripple	10%
Max. constant current	100 mA
Switching function	interlock
Output	PNP
Housing material	stainless steel
Thread	$M 5 \times 0.5$
Code class	IP 67
Ambient temperature	-25+70 °C
LED Function display	yes
Protected against short circuits	yes
Connection type	Plug
Length of cable	5 m

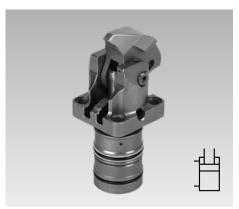
Size		1	2	3	4	5
Α	[mm]	12.5	12.5	10.5	10	12
В	[mm]	35	37	38.5	42.5	50
ØD	[mm]	33	42	42	45	45
L	[mm]	75.5	84.5	91.5	103.5	117
L1	[mm]	42	45	49	56.5	62
Part no.						
without switch		0353351	0353352	0353353	0353354	0353355
with switch and plug		0353351S	0353352S	0353353S	0353354S	0353355S
Spare parts						
Inductive proximity sw	itch	3829198	3829198	3829198	3829198	3829198
Right angle plug with cable 5m		3829099	3829099	3829099	3829099	3829099

Function chart

^{*} Dimensions see page 2 and 3

Important notes

Hinge clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil.


Hinge clamps can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces. Considerable injuries can be caused to fingers during clamping and unclamping in the effective area of the clamping lever.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices. Hinge clamps have to be checked regularly on contamination by swarf and have to be cleaned. Operating conditions, tolerances and other data see data sheet A 0.100.

Compact Clamps

Cartridge type, pneumatic position monitoring optional, double acting, max. operating pressure 250 bar

Application

Compact clamps are designed for application in hydraulic clamping fixtures where oil supply is effected through drilled channels in the fixture body.

Due to the minimum space required, the compact clamp is especially suitable for clamping fixtures with little space for the installation of hydraulic clamping elements.

A clamping recess in the workpiece a little bit wider than the clamping lever is sufficient as clamping surface. Typical applications are:

- Rotary indexing fixtures in horizontal and vertical machining centres
- Clamping fixtures for machining of several sides and complete machining
- · Multiple clamping fixtures with many workpieces that are closely arranged
- Test systems for motors, gears, etc.
- Assembly lines

Description

The hydraulic compact clamp is a double-acting pull-type cylinder where a part of the linear stroke is used to swing the clamping lever onto the workpiece.

The version with cover is inserted in open bore holes and enables the smallest possible building height.

The version without cover requires a closed pocket hole.

Available versions

1. With pneumatic 180X 1XX clamping monitoring

The clamping monitoring signals:

"The clamping lever is within the usable clamping range and the workpiece is clamped with minimum clamping force (min. 70 bar)."

2. With pneumatic unclamping monitoring

The unclamping monitoring signals:

"The clamping lever is within the unclamping range, starting approx. 10° before the final position."

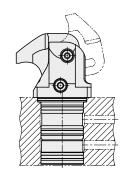
+ 1 636-386-8022

3. Without position monitoring 180X 1XXB

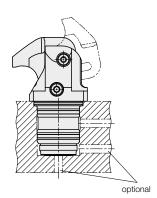
Pneumatic position monitoring see page 6

Important notes (see page 5)

ROEMHELD North America

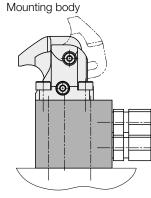

Advantages

- Minimum dimensions
- Partially immersed body
- Mounting without pipes
- Metallic wiper edge for piston rod
- Clamping lever can be swivelled into small recesses
- Workpiece clamping without any side loads
- Unimpeded loading and unloading of the clamping fixture
- Long clamping lever adaptable to the workpiece
- Universal lever for adapting customised clamping levers
- Mounting position: any

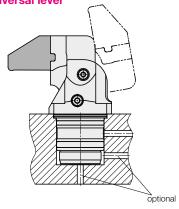

Installation and connecting possibilities

Drilled channels

with cover

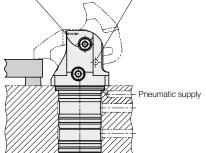


without cover



Pipe thread

with accessory Mounting body

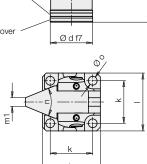

Universal lever

Long clamping lever (blank)

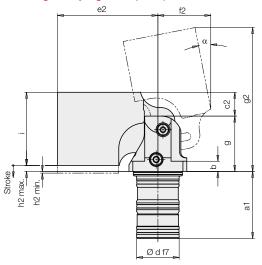
Pneumatic position monitoring

Clamping position Unclamping position

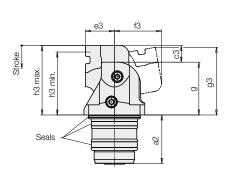
Application example



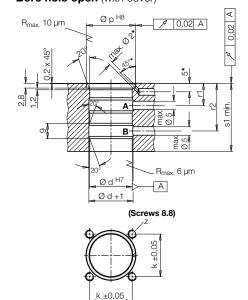
Clamping of a cast part


Dimensions

With cover Short clamping lever 180X 110


Lever length E. a,

Long clamping lever (blank) 180X 130



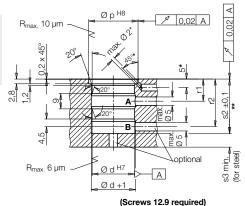
Without cover Universal lever 180X 150

Pneumatic position monitoring see page 6

Bore hole open (with cover)

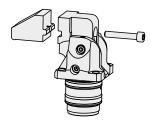
Materials

hardened, stainless Body Clamping lever: short HRc 48 - 55, stainless long (blank) X37 Cr Mo V5-1 hardened and tempered HRc 40 and nitrated Seals NBR and PUR (max. 80°C)

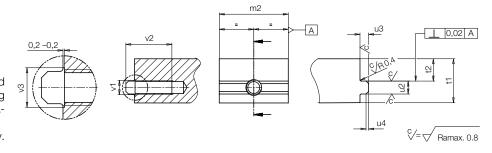

Accessories

Mounting body (see page 4)

- **A** = Clamping
- **B** = Unclamping
- Bore holes for pneumatic clamping and unclamping monitoring, only if required.
- ** Dimension s2 ±0.1 must be met, otherwise the piston will strike the bottom of the pocket hole.


Pocket hole (without cover)

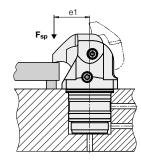
Secure set screw after assembly of the clamping lever with thread glue!


Universal lever

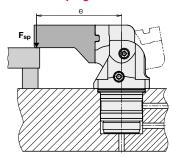
The compact clamp with universal lever and integrated swing mechanism enables the fixing of customised clamping levers, which are relatively easy to manufacture.

The fixing screw 12.9 included in our delivery. Tightening torque see chart page 3.

Connecting dimensions to the flange of the universal lever


Technical data

Size Clamping force at 250 bar (short clamping lever) [k	N]	1 3.2	2 4.5	3 7.5	4 11.5
Max. stroke	[mm]	5	5	7	8.5
Clamping stroke, usable	[mm]	4.5	4.5	6.5	8
Piston Ø/piston rod Ø	[mm]	18 / 11	22 / 14	28 / 17	33 / 19
Dil volume clamping/unclamping	[cm ³]	2.3 / 3.6	3.2 / 5.4	6.4 / 10.2	10.5 / 15.7
Max. flow rate	[cm ³ /s]	8	11	22	35
Minimum pressure without clamping monitoring	[bar]	20	20	20	20
with clamping monitoring	[bar]	70	70	70	70
with unclamping monitoring	[bar]	20 3	20	20	20
Min. air pressure	[bar] [°]	3 13.5	3 10.5	3 14	3 16
x ±1 a1	[mm]	39.4	43	48.5	50.5
a2	[mm]	32	34	40.6	40.8
)	[mm]	6	7	10	10
21	[mm]	5	5	7	8.5
52	[mm]	14	12	7	8.5
23	[mm]	14	16	16	22.5
Ød H7/f7	[mm]	25	32	40	45
e1	[mm]	27	28	36.5	36.5
e2	[mm]	59	60	67.5	67.5
e3	[mm]	17	20	22	22
1	[mm]	24,7	25,9	31,3	33,8
2	[mm]	30,7	30,5	31,3	33,8
3	[mm]	34,3	37	40,4	48,1
	[mm]	32,5	36,5	43	46
g1 max.*	[mm]	49,3	51	63	64,8
g2 min./max.*	[mm]	85 / 87,5	86/89,5	97,7/99,7	100,9/103
g3	[mm]	44	47,2	55,4	60,6
n1 min. / h1 max.	[mm]	15.5 / 20	15.5 / 20	15.5 / 22	15.5 / 23.5
n2 min. / h2 max.	[mm]	1/3.5	2 / 2.5	1 / 5.5	1/7
n3 min. / h3 max.	[mm]	42 / 46.5	48 / 52.5	52.5 / 59	60.5 / 68.5
	[mm]	43	46	44.5	47.5
	[mm]	25	31	36.5	41
m1	[mm]	34 5	42 6	48 8	55 8
n2	[mm] [mm]	21	26	32	35
) 	[°]	50.4	55.8	56.1	62
o O	[mm]	5.2	6.2	6.2	8.2
Э С Э р Н8	[mm]	29	36	44	49
1	[mm]	13	13	14	14
2	[mm]	28	28	31	31
= s1 min.	[mm]	40	43.5	49	51
62 ± 0,1	[mm]	32	34	40.6	40.8
3 min.	[mm]	6	7	9	10
1	[mm]	20	23	23	29
2	[mm]	8.5	12	10	17
12 -0,05	[mm]	4	5	6	6
13	[mm]	2	3	4	4
14	[mm]	0.9×45°	1x45°	1.3×45°	1.3x45°
1 x v2	[mm]	M5 x 10	M5 x 10	M8 x 17	M8 x 17
Ø v3	[mm]	5.5	5.5	8.5	8.5
!	[mm]	M5	M6	M6	M8
Vith pneumatic clamping monitoring Version	with cover				
Part no short clamping lever		1801 110	1802110	1803110	1804 110
Veight, approx.	[kg]	0.3	0.53	0.92	1.17
Part no long clamping lever (blank)		1801 130	1802 130	1803 130	1804 130
Veight, approx.	[kg]	0.57	0.88	1.4	1.7
Part no universal lever		1801 150	1802 150	1803150	1804 150
Veight, approx.	[kg]	0.32	0.57	0.93	1.06
ersion without cover**					
art no short clamping lever		1801 111	1802111	1803 111***	1804111
Veight, approx.	[kg]	0.27	0.46	0.82	1.03
art no long clamping lever (blank)		1801 131	1802131	1803 131***	1804131
Veight, approx.	[kg]	0.54	0.82	1.3	1.56
Part no universal lever		1801 151	1802 151	1803 151***	1804 151
Veight, approx.	[kg]	0.29	0.51	0.83	0.92
Vith pneumatic unclamping monitoring					
Part no. (version see above)		1801 1XXA	18021XXA	18031XXA	18041XXA
Without position monitoring					
Part no. (version see above)		1801 1XXB	18021XXB	1803 1XXB	18041XXB
Accessories					
		25404404	25404400	25404400	05404404
Part no short clamping lever		3548 1121	35481122 35481072	35481123	3548 1124
Part no long clamping lever (blank) Part no universal lever		3548 1071 3548 4111	3548 1072 3548 4112	3548 1073 3548 4113	3548 1074 3548 4114
Screw for universal lever	[mm]	M5x30 -12.9	M5x30 -12.9	M8x35 -12.9	M8x35 -12.9
	[Nm]	10	10	42	42
Fightening torque	HISTORY				


min. = height in unclamping position as presented. max. = max. height for swinging
 use screw material12.9; *** max. operating pressure 200 bar

Clamping forces

Short clamping lever

Universal clamping lever

Calculation of the clamping force

Clamping lever length e is known

1.1 Admissible clamping force as a function of the clamping lever length e

$$F_{adm} = \frac{A}{e - B}$$
 [kN]

1.2 Admissible operating pressure

$$p_{adm} = \frac{F_{adm} * 100}{C} \left(\frac{e - B}{D} + 1 \right) \quad [bar]$$

1.3 Effective clamping force at other

1.3.1 $F_{adm} = and p_{adm}$ are known

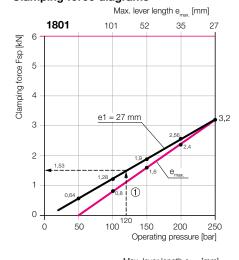
$$F_{sp} = F_{adm} \frac{p}{p_{adm}} \le F_{adm}$$
 [kN]

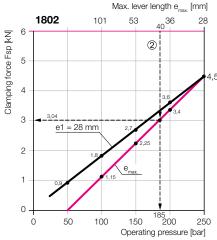
1.3.2 In general

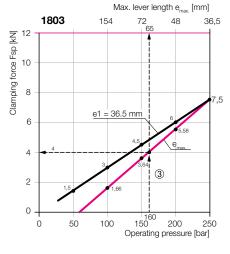
$$F_{sp} = \ \frac{C}{\left(\frac{e-B}{D}+1\right) \star 100} \star p \ \leq F_{adm} \qquad [kN]$$

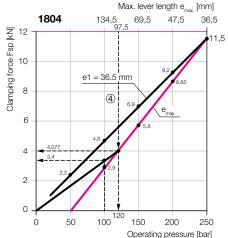
Maximum clamping lever length depending on the existing operating pressure

$$e_{\text{max}} = \frac{A}{(C * 0.01 * p) - E} + B \quad [mm]$$


F _{sp} , F _{adm.}	= Clamping force	[kN]
e, e1, e _{max.}	= Clamping lever length	[mm]
p, p _{adm.}	= Operating pressure	[bar]
AE	= Constants as per chart	


Enter the variables in the above units into the formulas


Constants


Size	1801	1802	1803	1804
Α	80	112.5	251.3	385.3
В	2	3	3	3
С	1.594	2.262	3.888	5.718
D	101.7	97.62	113	138.1
E	0.787	1.152	2.224	2.789

Clamping force diagrams

Example 1 Compact clamp 1801 110 Series clamping lever e1 = 27 mm $F_{adm} = 3.2 \text{ kN}$ at $p_{adm} = 250 \text{ bar}$ Operating pressure p = 120 bar

Effective clamping force
$$F_{sp} = \quad F_{adm} \; \frac{P}{p_{adm}} = 3.2 \; \frac{120}{250} = \; 1.536 \; kN$$

$$F_{Sp} = \frac{C}{\frac{(e-B)(h-1)*100}{(E-B)+1)*100}} * p$$

$$F_{Sp} = \frac{1.594}{\frac{(27-2)}{(1017)*1}*100} * 120$$

$$E = -1.535 \text{ kN}$$

Example 2 Compact clamp 1802110 Series clamping lever e = 40 mm

Admissible clamping force
$$F_{\text{adm}} = \ \frac{A}{e-B} = \frac{112.5}{40-3} = \ 3.04 \ \text{kN}$$

Admissible operating pressure

$$p_{adm} = \frac{F_{adm} * 100}{C} * \left(\frac{e - B}{D} + 1\right)$$

$$p_{adm} = \frac{3.04 * 100}{2.262} * \left(\frac{40 - 3}{97.62} + 1\right)$$

Example 3 Compact clamp 1803110 Operating pressure p = 160 bar Special clamping lever

Maximum clamping lever length
$$e_{max} = \frac{A}{(C * 0.01 * p) - E} + B$$

$$e_{max} = \frac{251.3}{(3.888 * 0.01 * 160) - 2.224} + 3$$

$$e_{max} = 65.875 \text{ mm} → 65 \text{ mm}$$

$$\begin{aligned} & \text{Maximum clamping force} \\ & F_{\text{Sp}} = \begin{array}{c} C \\ \frac{\left(\frac{e-B}{D}+1\right) \star 100}{\left(\frac{e-B}{D}+1\right) \star 100} \star p \\ \\ & F_{\text{Sp}} = \begin{array}{c} \frac{3.888}{\left(\frac{85-3}{113}+1\right) \star 100} \star 160 \\ \\ & F_{\text{Sp}} = \end{array} \end{aligned}$$

Example 4 Compact clamp 1804110 Special clamping lever e = 97.5 mm

Admissible clamping force
$$F_{\text{adm}} = \ \frac{A}{e-B} = \frac{385.3}{97.5-3} = \ 4.077 \ \text{kN}$$

Admissible operating pressure
$$p_{adm} = \frac{F_{adm} * 100}{C} * \left(\frac{e-B}{D} + 1\right)$$

$$p_{adm} = \frac{4.077 * 100}{5.718} * \left(\frac{97.5 - 3}{138.1} + 1\right)$$

 $p_{adm} = 120 bar$

Effective clamping force at 100 bar
$$F_{Sp} = \frac{C}{\frac{(\theta - B + 1)}{D} * 100} * p$$

$$F_{Sp} = \frac{5.718}{\frac{(97.5 - 3 + 1)}{138.1} * 100} * 100$$

$$F_{a} = 3.4 \text{ kN}$$

Admissible flow rate Important notes

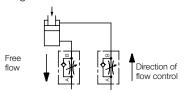
Admissible flow rate

The admissible flow rate as per the chart on page 3 refers to the "short" clamping lever. Thus the clamping time is approx. 0.6 seconds and the unclamping time approx. 1 second. Longer clamping levers with larger mass moments of inertia cause higher loads on the swing mechanism, which results in higher wear. The end stop during unclamping is also critical. Therefore, the flow rate should be reduced with longer clamping levers according to the following formula:

$$Q_L = Q_k * \sqrt{\frac{J_k}{J_l}} \text{ cm}^3/\text{s}$$

Q_L = Adm. flow rate with longer special clamping lever

 $Q_{\rm K} = {\rm Adm.}$ flow rate with "short" clamping lever as per the chart on page 3

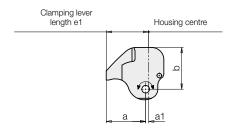

J_K = Moment of inertia of the "short" clamping lever (see chart)

J_L = Moment of inertia of the special clamping lever

$$\label{eq:clamping_loss} \text{Clamping time } t_{\text{Sp}} = \frac{ \quad \text{Oil volume clamping } [\text{cm}^3] }{ \quad \text{Adm. flow rate } \frac{ [\text{cm}^3] }{ \text{c} } } \ [\text{s}]$$

Throttling of the flow rate

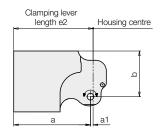
A flow rate throttling has to be effected in the supply line to the compact clamp. This avoids a pressure intensification and thereby pressures exceeding 250 bar.


Determine the moment of inertia

Due to the complicated shape of the clamping levers, the mass moment of inertia can only be determined with the help of a CAD model in the computer.

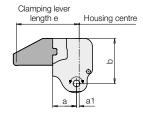
Attention! The clamping lever length e always starts from the centre of the housing. As the examples show, the swing axis for determining the moment of inertia is offset by 1-2 mm. The exact position of the swing axis can be determined with the coordinates a and b.

Short clamping lever


The moment of inertia in the chart is the starting point for the maximum flow rate and the shortest possible clamping time.

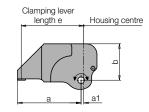
Size		1	2	3	4
e1	[mm]	27	28	36.5	36.5
а	[mm]	26	26	34.5	34.5
a1	[mm]	1	2	2	2
b	[mm]	25.5	27.5	33	36
Moment of inertia J _K	[kgmm²]	22	34	98	125

Long clamping lever (blank)


The blank is not a finished clamping lever. The value in the chart shows how high the maximum moment of inertia can rise.

Size		1	2	3	4
e2	[mm]	59	60	67.5	67.5
а	[mm]	58	58	65.5	65.5
a1	[mm]	1	2	2	2
b	[mm]	34.5	34.5	33	36
Moment of inertia J _L	[kgmm²]	576	756	1234	1477

Universal clamping lever


The universal clamping lever is supplemented by clamping arm provided by the customer and the fixing screw. A CAD model should be created in the assembled state to determine the moment of inertia.

;	Size		1	2	3	4
	е	[mm]	Cu	stome	r requ	est
	a	[mm]	16	18	20	20
	a1	[mm]	1	2	2	2
	b	[mm]	34.5	38.5	42	50
	Moment of		l	Jnivers	al leve	er
į	inertia J _{L1}	[kgmm ²]	35	63	146	220
	+ extension J _{L2}	[kgmm²]	W	Deter		el

One-piece special clamping lever

A one-piece special clamping lever can only be manufactured at Römheld because exact contours are required for the swing mechanism and the pneumatic position monitoring.

Size		1	2	3	4
е	[mm]	Cı	ıstome	r requ	est
а	[mm]	Cı	ıstome	r requ	est
a1	[mm]	1	2	2	2
b	[mm]	25.5	27.5	33	36
Moment of			Deter	mine	
inertia $J_{\scriptscriptstyle L}$	[kgmm ²]	٧	vith CAI	D mod	el

Important notes

The compact clamps are designed exclusively for clamping of workpieces in industrial applications.

Hydraulic clamping elements can generate considerable forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

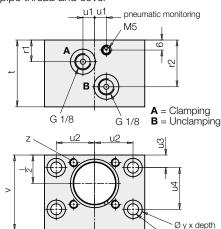
In the effective area of clamping lever there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

During loading and unloading of the fixture a collision with the clamping lever has to be avoided. Remedy: Mount position adaptor.

The height of the flange surface of the compact clamp and the height of the clamping surface

on the workpiece should be matched so that the clamping height is approximately in the middle of the usable clamping stroke.

The compact clamp has to be checked regularly on contamination by swarf and has to be cleaned.


For dry machining, minimum quantity lubrication and in case of accumulation of very small swarf or particles, regular disassembly, cleaning and lubrication of the lever mechanism as per operating manual is required.

Operating conditions, tolerances and other data see data sheet A 0.100.

Mounting body Pneumatic position monitoring

Mounting body

for version with pipe thread and cover

Pneumatic position monitoring

1. Pneumatic clamping monitoring

In the clamping area, the clamping lever slides downwards at two hardened surfaces of the body. In one of the surfaces there is the bore hole for the pneumatic clamping monitoring.

The clamping lever overruns the bore hole, but does not completely close it. Only when the workpiece is really clamped, the clamping lever supports itself on the sliding surface and the bore hole will be firmly closed.

The clamping monitoring signals:

- The clamping lever is in the usable clamping range and
- a workpiece is clamped.

Important note

Required minimum pressures for clamping monitoring:

Hydraulics 70 bar Pneumatics 3 bar

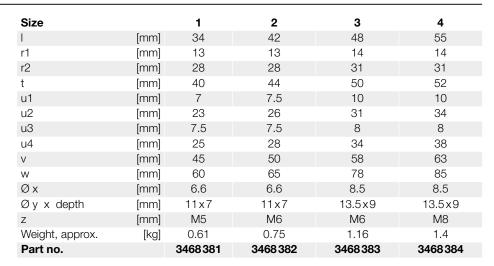
2. Pneumatic unclamping monitoring

In the unclamping position the clamping lever closes a pneumatic bore hole.

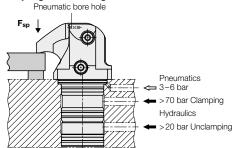
Important note

The compact clamp is available with "clamping monitoring" or "unclamping monitoring". The control of both positions is not possible since the minimum dimensions of the housing allow only one pneumatic connection.

Monitoring by pneumatic pressure switch


For the evaluation of the pneumatic pressure increase standard pneumatic pressure switches can be used.

With one pressure switch up to 8 compact clamps can be controlled.

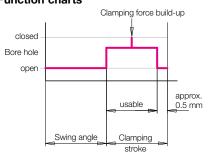

Important note

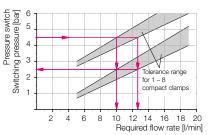
Pneumatic position monitorings are only process-safe, when air pressure and air volume are precisely adjusted.

For measuring the air volume, appropriate devices are available. Please contact us.

Clamping monitoring

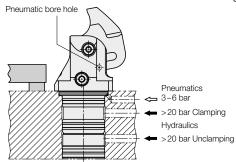
Example for clamping position


Required switching pressure 4.5 bar Pressure drop, if 1 compact


clamp is not clamped approx. 2 bar

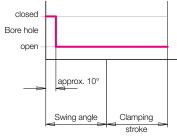
As per diagram:

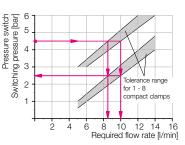
Required flow rate approx. 10-13 l/min (depending on the number of connected compact clamps)


Function charts

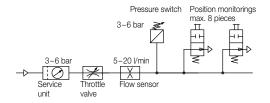
Required flow rate depending on the switching pressure of the pneumatic pressure switch for a pressure drop Δp 2 bar

Unclamping monitoring

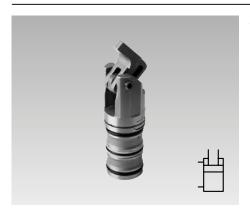

Example for unclamping position

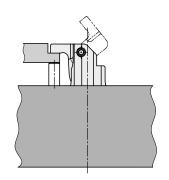

Required switching pressure 4.5 bar Pressure drop, if 1 compact

clamp is not unclamped approx. 2 bar


As per diagram:

Required flow rate approx. 8.5-10 l/min (depending on the number of connected compact clamps)


Required flow rate depending on the switching pressure of the pneumatic pressure switch for a pressure drop Δp 2 bar

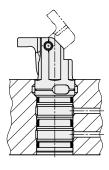

Mini Compact Clamp

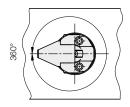
Cartridge type, clamping force 1.3 kN double acting, max. operating pressure 200 bar

Advantages

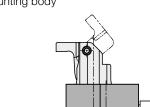
- Minimum dimensions (Ø 22 mm)
- Partially immersed body
- Space-saving integration by a patented fixing principle
- Housing can be rotated by 360°
- Mounting without pipes
- Workpiece clamping without any side loads
- Narrow clamping lever
- Metallic wiper edge
- Mounting position: any

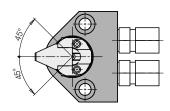
Application


Mini compact clamps are designed for application in hydraulic clamping fixtures where oil supply is effected through drilled channels in the fixture body.

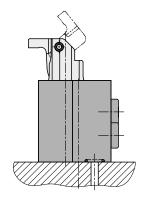

Thanks to the small housing diameter of only 22 mm, the mini compact clamp can be installed in places where up to now there was insufficient space for a hydraulic clamping element. In multiple clamping fixtures, the minimum distance between cylinders is 28 mm. A clamping recess in the workpiece a little bit wider than the clamping lever is sufficient for clamping.

Typical applications are:


- Clamping fixtures for small workpieces and workpieces which are very sensitive against deformation
- Multiple clamping fixtures with many workpieces that are closely arranged
- Assembly fixtures
- Clamping fixtures for machining of several sides and complete machining
- Rotary indexing fixtures on horizontal and vertical machining centres


Installation and connecting possibilities **Drilled channels**

Pipe thread with accessory mounting body

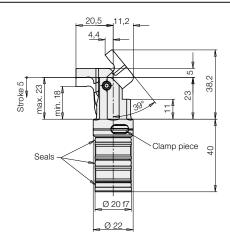

Description

The hydraulic mini compact clamp is a doubleacting pull-type cylinder where a part of the linear stroke is used to swing the clamping lever onto the workpiece. In order to minimise the dimensions, the usual flange for screw fixing is omitted.

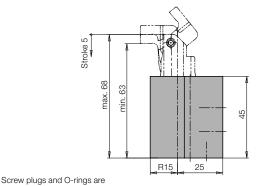
Instead 2 clamp pieces engage in a radial slot in the cartridge-type hole. When mounting, these clamp pieces are radially expanded by set screws accessible from above. Thus, the clamping force is compensated by form fit and without clearance.

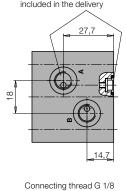
The mini compact clamp can be turned by 360° in the cartridge-type hole.

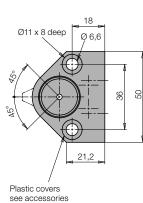
with accessory mounting body

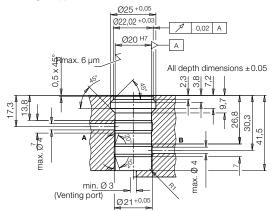


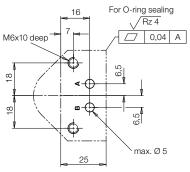
Application example


Clamping of a cast part


Dimensions Technical data • Accessories




Accessory Mounting body



Cartridge-type hole

Connecting scheme for drilled channels

A = Clamping **B** = Unclamping Spare O-ring 8x1.5 Part no. 3000343

Important notes

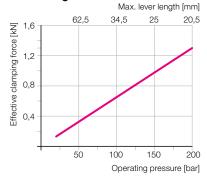
Mini compact clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. In the effective area of the piston rod and the clamping arm there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices. During loading and unloading of the fixture a collision with the clamping lever has to be avoided. Remedy: Mount position adaptor.

Due to the relatively small clamping stroke the height of the workpiece should be adapted so that the clamping point is approximately in the centre of the usable clamping stroke. By doing so a sufficient clamping reserve remains also in the case of larger workpiece tolerances.

The mini compact clamp has to be checked regularly on contamination by swarf and has to be cleaned, if required. In the case of increased swarf formation, the mini compact clamp must be included into the cleaning process with coolant.

The mini compact clamp is <u>not</u> suitable for dry machining, minimum quantity lubrication and in case of accumulation of very small swarf.

Operating conditions, tolerances and other data see data sheet A 0.100.

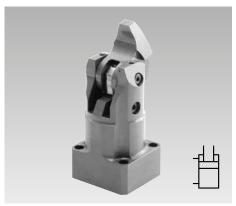

Technical data

	aata		
Clamping f	orce at 200 ba	ır [kN]	1.3
Stroke		[mm]	5
Piston Ø		[mm]	14
Rod Ø		[mm]	9
Oil volume	clamping	[cm ³]	approx. 1
	unclamping	[cm ³]	approx. 1.6
Max. flow r	ate	[cm ³ /s]	5
Min. opera	ting pressure	[bar]	20
Weight		[kg]	approx. 0.13
Part no.			1800110

Accessories

Accessories		
Mounting body		
Weight	[kg]	0.44
Part no.		0346821
Plastic cover Ø 11		
Part no.		3300685

Effective clamping force and max. lever length



Special levers are available on request.

Compact Clamps

Manifold-mounting type, pneumatic position monitoring optional, double acting, max. operating pressure 250 bar

Application

Compact clamps are designed for application in hydraulic clamping fixtures where oil supply is effected through drilled channels in the fixture body.

Due to the minimum space required, the compact clamp is especially suitable for clamping fixtures with little space for the installation of hydraulic clamping elements.

A clamping recess in the workpiece a little bit wider than the clamping lever is sufficient as clamping surface. Typical applications are:

- Rotary indexing fixtures in horizontal and vertical machining centres
- Clamping fixtures for machining of several sides and complete machining
- · Multiple clamping fixtures with many workpieces that are closely arranged
- Test systems for motors, gears, etc.
- Assembly lines

Description

The hydraulic compact clamp is a double-acting pull-type cylinder where a part of the linear stroke is used to swing the clamping lever onto

Pneumatic position monitoring the workpiece.

Available versions

1. With pneumatic clamping monitoring

180X2XX

The clamping monitoring signals:

"The clamping lever is within the usable clamping range and the workpiece is clamped with minimum clamping force (min. 70 bar)."

2. With pneumatic unclamping monitoring 180X2XXA

The unclamping monitoring signals:

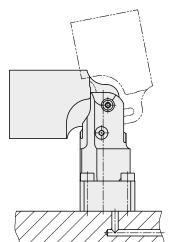
"The clamping lever is within the unclamping range, starting approx. 10° before the final position."

- 3. Without position monitoring 180X 2XXB
- With pneumatic clamping and unclamping monitoring 180X 2XXC

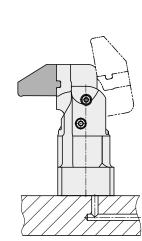
Pneumatic position monitoring see page 6.

Important notes

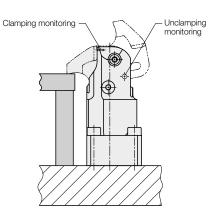
(see page 5)


Advantages

- Minimum dimensions
- Mounting without pipes
- Metallic wiper edge for piston rod
- Clamping lever can be swivelled into small recesses
- Workpiece clamping without any side loads
- Unimpeded loading and unloading of the clamping fixture
- Long clamping lever adaptable to the workpiece
- Universal lever for adapting customised clamping levers
- Mounting position: any

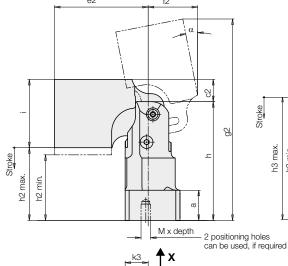

Installation and connecting possibilities

Drilled channels

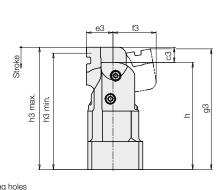

with short clamping lever with long clamping lever (blank)

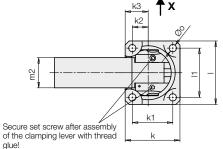
Application example

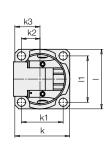
Clamping of a cast part with special clamping lever

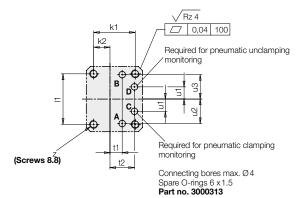

Dimensions

Short clamping lever 180X 210


_ever length 5 h1 max. h1 min.


M x depth


Long clamping lever (blank) 180X 230



Connecting scheme

A = Clamping **B** = Unclamping

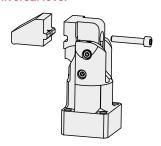
glue!

C = Clamping monitoring **D** = Unclamping monitoring

View X Øq <u>t1</u>

Materials

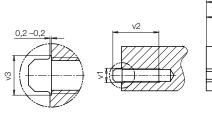
Body: hardened, stainless Clamping lever:

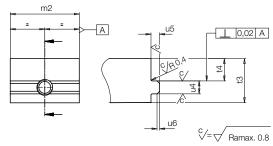

HRc 48 – 55, stainless short long (blank) X37 Cr Mo V5-1 hardened

and tempered HRc 40 and nitrated

NBR and PUR (max. 80°) Seals:

Pneumatic position monitoring see page 4.

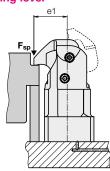

Universal lever



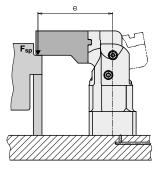
The compact clamp with universal lever and integrated swing mechanism enables the fixing of customised clamping levers, which are relatively easy to manufacture.

The fixing screw 12.9 included in our delivery. Tightening torque see chart page 3.

Connecting dimensions to the flange of the universal lever


Technical data

Size Clamping force at 250 bar (short clamping I	ever) [kN]	1 3.2	2 4.5	3 7.5	4 11.5
Max. stroke	[mm]	5	5	7	8.5
Clamping stroke, usable	[mm]	4.5	4.5	6.5	8
Piston Ø	[mm]	18	22	28	33
Rod Ø	[mm]	11	14	17	19
Oil volume clamping	[cm³]	2.3	3.2	6.4	10.5
Oil volume unclamping	[cm ³]	3.6	5.4	10.2	15.7
Max. flow rate	[cm ³ /s]	8	11	22	35
Min. operating pressure					
without clamping monitoring	[bar]	20	20	20	20
with clamping monitoring	[bar]	70	70	70	70
Min. air pressure	[bar]	3	3	3	3
α ±1	[0]	13.5	10.5	14	16
a	[mm]	19	21	24	24
c1	[mm]	5	5	7	8.5
c2	[mm]	14	12	7	8.5
c3	[mm]	14	16	16	22.5
e1	[mm]	27	28	36.5	36.5
e2	[mm]	59	60	67.5	67.5
e3	[mm]	17	20	22	22
f1	[mm]	24.7	25.9	31.3	33.8
f2	[mm]	30.7	30.5	31.3	33.8
f3	[mm]	34.3	37	40.4	48.1
g1 max.*	[mm]	91.6	95	115.2	117.3
g2 min. / max.*	[mm]	127.3/129.8	130.3/134	150.1/152	153.5/155.6
g3	[mm]	86.3	96.8	111.4	121.1
h	[mm]	74.8	80.8	95.4	98.6
h1 min. / h1 max.	[mm]	57.8 / 62.3	59.8 / 64.3	67.9 / 74.4	68.1 / 76.1
h2 min. / h2 max.	[mm]	41.3 / 45.8	42.3 / 46.8	51.4 / 57.9	51.6 / 59.6
h3 min. / h3 max.	[mm]	84.3 / 88.8	92.3 / 96.8	104.9 / 111.4	113.1 / 121.1
	[mm]	43	46	44.5	47.5
k 	[mm]	34.5	41.5	52	54
k1	[mm]	25.5	31.5	38	41
k2	[mm]	10	14	16	18
k3	[mm]	14.5	19	23	24.5
	[mm]	40	45	58	59
	[mm]	31	35	44	46
m1	[mm]	5	6	8	8
m2	[mm]	21	26	32	35
n ~	[°]	50.4	55.8	56.1	62
Øo	[mm]	5.2	6.2	8.2	8.2
p1 ±0.02	[mm]	32	35	44	48
p2 ± 0.1	[mm]	1.5	0	0	3
Ø q +0.05 x depth	[mm]	6x9	6x9	8x17	8x17
t1	[mm]	7.5	8.5	10	11
t2 t3	[mm]	15 20	16.7 23	21.5 23	21.2 29
	[mm]				
t4	[mm]	8.5	12	10	17
u1	[mm]	7.5	9.2	12.5	13.5
u2 u3	[mm]	15 15	16.8 16.8	20 20	23 22
u3 u4 – 0.05	[mm]	4			6
-,	[mm]	2	5 3	6 4	6
u5	[mm]	0.9×45°	1 x 45°		·
u6	[mm]			1.3×45°	1.3×45°
v1 x v2 Ø v3	[mm]	M5 x 10 5.5	M5 x 10 5.5	M8x17 8.5	M8x17 8.5
Z	[mm]	5.5 M5	5.5 M6	8.5 M8	8.5 M8
	[mm]	CIVI	IVIO	IVIO	IVIÖ
With pneumatic clamping monitoring					
Part no short clamping lever		1801 210	1802210	1803 210	1804210
Weight, approx.	[kg]	0.46	0.69	1.29	1.42
Part no long clamping lever (blank)		1801 230	1802230	1803 230	1804230
Weight, approx.	[kg]	0.74	1.05	1.77	1.93
Part no universal lever		1801 250	1802250	1803 250	1804 250
Weight, approx.	[kg]	0.46	0.73	1.27	1.44
With pneumatic unclamping monitoring					
Part no. (version see above)		1801 2XXA	18022XXA	18032XXA	18042XXA
,					.0012/07
Without position monitoring		4004 000/5	4000 000	4000000	4004607
Part no. (version see above)		1801 2XXB	18022XXB	18032XXB	18042XXB
With clamping and unclamping monitor	ing				
Part no. (version see above)		1801 2XXC	18022XXC	18032XXC	18042XXC
Accessories					
		05404404	05404400	05404400	05404404
Part no short clamping lever		3548 1121	35481122	35481123	35481124
Part no long clamping lever (blank)		3548 1071	3548 1072	35481073	3548 1074
Part no universal lever	f 3	3548 4111	3548 4112	35484113	35484114
Screw for universal lever	[mm]	M5x30 –12.9	M5 x 30 -12.9	M8x35 –12.9	M8 x 35 -12.9
Tightening torque	[Nm]	10	10	42	42
Part no.		3301 1019	3301 1019	3301 468	3301 468


^{*} min. = height in unclamping position as presented. max. = max. height for swing in

Clamping forces

Short clamping lever

Universal clamping lever

Calculation of the clamping force

Clamping lever length e is known

1.1 Admissible clamping force as a function of the clamping lever length e

$$F_{adm} = \frac{A}{e - B}$$
 [kN]

1.2 Admissible operating pressure

$$p_{adm} = \frac{F_{adm} * 100}{C} \left(\frac{e - B}{D} + 1 \right) \quad [bar]$$

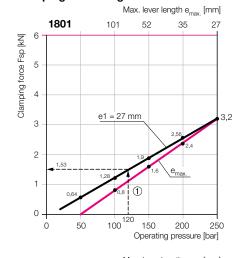
- 1.3 Effective clamping force at other pres-
- **1.3.1** $F_{adm} = and p_{adm}$ are known

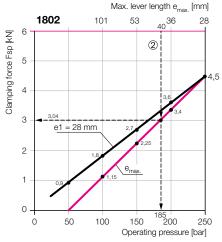
$$F_{sp} = F_{adm} \frac{p}{p_{adm}} \le F_{adm}$$
 [kN]

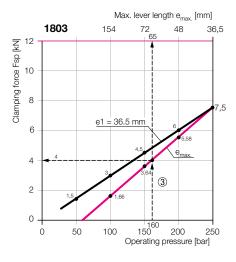
$$F_{sp} = \frac{C}{\frac{(e-B)}{D} + 1 \times 100} * p \le F_{adm} \quad [kN]$$

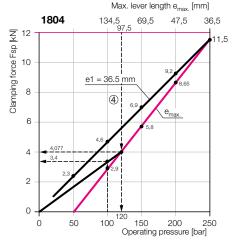
Maximum clamping lever length depending on the existing operating

$$e_{max} = \frac{A}{(C * 0.01 * p) - E} + B$$
 [mm]


F _{sp} , F _{adm.}	= Clamping force	[kN]
e, e1, e _{max.}	= Clamping lever length	[mm
p, p _{adm.}	= Operating pressure	[bar]
AE	= Constants as per chart	


Enter the variables in the above units into the formulas


Constants


Size	1801	1802	1803	1804
Α	80	112.5	251.3	385.3
В	2	3	3	3
С	1.594	2.262	3.888	5.718
D	101.7	97.62	113	138.1
E	0.787	1.152	2.224	2.789

Clamping force diagrams

Example 1 Compact clamp 1801210 Series clamping lever e1 = 27 mm $F_{adm} = 3.2 \text{ kN}$ at $p_{adm} = 250 \text{ bar}$ Operating pressure p = 120 bar

Effective clamping force
$$F_{Sp} = \quad F_{adm} \ \frac{P}{\rho_{adm}} = 3.2 \ \frac{120}{250} = \ 1.536 \ kN$$

$$F_{Sp} = \frac{C}{\frac{(e-B+1)*100}{D}*p} * p$$

$$F_{Sp} = \frac{1.594}{\frac{(27-2)}{(101,7}+1)*100}*120$$

$$F_{Sp} = 1.535 \text{ kN}$$

Example 2 Compact clamp 1802210 Series clamping lever e = 40 mm

Admissible clamping force
$$F_{adm} = \frac{A}{e-B} = \frac{112.5}{40-3} = 3.04 \text{ kN}$$

$$p_{adm} = \frac{F_{adm} * 100}{C} * \left(\frac{e - B}{D} + 1\right)$$

$$p_{adm} = \frac{3.04 * 100}{2.262} * \left(\frac{40 - 3}{97.62} + 1\right)$$

Example 3 Compact clamp 1803210 Operating pressure p = 160 bar Special clamping lever

Maximum clamping lever length
$$e_{max} = \frac{A}{(C * 0.01 * p) - E} + B$$

$$e_{max} = \frac{251.3}{(3.888 * 0.01 * 160) - 2.224} + 3$$

$$e_{max} = 65.875 \text{ mm} \rightarrow 65 \text{ mm}$$

$$\label{eq:maximum clamping force} \begin{aligned} &\text{Maximum clamping force} \\ &F_{Sp} = & \frac{C}{\frac{\left(e-B}{D}+1\right)\star100}\star p \\ &F_{Sp} = & \frac{3.888}{\left(\frac{85-3}{113}+1\right)\star100}\star 160 \\ &F_{Sn} = & 4\text{ kN} \end{aligned}$$

Example 4 Compact clamp 1804210 Special clamping lever e = 97.5 mm

Admissible clamping force
$$F_{adm} = \frac{A}{e-B} = \frac{385.3}{97.5-3} = 4.077 \text{ kN}$$

Admissible operating pressure

$$\begin{split} \rho_{adm} &= \frac{F_{adm} * 100}{C} * \left(\frac{e - B}{D} + 1 \right) \\ \rho_{adm} &= \frac{4.077 * 100}{5.718} * \left(\frac{97.5 - 3}{138.1} + 1 \right) \end{split}$$

 $p_{adm} = 120 bar$

Effective clamping force at 100 bar
$$F_{Sp} = \frac{C}{\frac{\left(\theta - B + 1\right) \times 100}{D} \times p} \times F_{Sp} = \frac{5.718}{\frac{\left(\overline{97.5} - 3 + 1\right) \times 100}{138.1} \times 100} \times 100$$

$$F_{Sp} = 3.4 \text{ kN}$$

Admissible flow rate Important notes

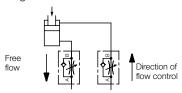
Admissible flow rate

The admissible flow rate as per the chart on page 3 refers to the "short" clamping lever. Thus the clamping time is approx. 0.6 seconds and the unclamping time approx. 1 second. Longer clamping levers with larger mass moments of inertia cause higher loads on the swing mechanism, which results in higher wear. The end stop during unclamping is also critical. Therefore, the flow rate should be reduced with longer clamping levers according to the following formula:

$$Q_L = Q_k * \sqrt{\frac{J_k}{J_l}} cm^3/s$$

Q_L = Adm. flow rate with longer special clamping lever

Q_K= Adm. flow rate with "short" clamping lever as per the chart on page 3

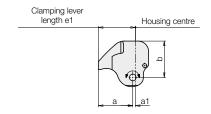

J_K = Moment of inertia of the "short" clamping lever (see chart)

J_L = Moment of inertia of the special clamping lever

$$\label{eq:clamping_loss} \text{Clamping time } t_{Sp} = \frac{ \text{ Oil volume clamping } [cm^3] }{ \text{ Adm. flow rate } \frac{[cm^3]}{s} } \ [s]$$

Throttling of the flow rate

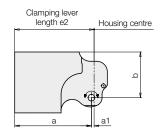
A flow rate throttling has to be effected in the supply line to the compact clamp. This avoids a pressure intensification and thereby pressures exceeding 250 bar.


Determine the moment of inertia

Due to the complicated shape of the clamping levers, the mass moment of inertia can only be determined with the help of a CAD model in the computer.

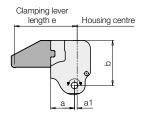
Attention! The clamping lever length e always starts from the centre of the housing. As the examples show, the swing axis for determining the moment of inertia is offset by 1-2 mm. The exact position of the swing axis can be determined with the coordinates a and b.

Short clamping lever


The moment of inertia in the chart is the starting point for the maximum flow rate and the shortest possible clamping time.

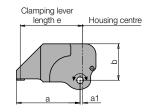
Size		1	2	3	4
e1	[mm]	27	28	36.5	36.5
а	[mm]	26	26	34.5	34.5
a1	[mm]	1	2	2	2
b	[mm]	25.5	27.5	33	36
Moment of inertia J _K	[kgmm²]	22	34	98	125

Long clamping lever (blank)


The blank is not a finished clamping lever. The value in the chart shows how high the maximum moment of inertia can rise.

Size		1	2	3	4
e2	[mm]	59	60	67.5	67.5
а	[mm]	58	58	65.5	65.5
a1	[mm]	1	2	2	2
b	[mm]	34.5	34.5	33	36
Moment of inertia J L	[kgmm²]	576	756	1234	1477

Universal clamping lever


The universal clamping lever is supplemented by clamping arm provided by the customer and the fixing screw. A CAD model should be created in the assembled state to determine the moment of inertia.

Size		1	2	3	4
е	[mm]	Cu	ıstome	r requ	est
а	[mm]	16	18	20	20
a1	[mm]	1	2	2	2
b	[mm]	34.5	38.5	42	50
Moment of inertia J _{L1}	[kgmm²]		Jnivers 63	al leve 146	
+ extension	[kgmm²]	W	Deter	rmine D mod	el

One-piece special clamping lever

A one-piece special clamping lever can only be manufactured at Römheld because exact contours are required for the swing mechanism and the pneumatic position monitoring.

Size		1	2	3	4
е	[mm]	Cı	ustome	er requ	est
а	[mm]	Cu	ustome	er requ	est
a1	[mm]	1	2	2	2
b	[mm]	25.5	27.5	33	36
Moment of inertia J _L	[kgmm²]	٧		rmine D mod	el

Important notes

The compact clamps are designed exclusively for clamping of workpieces in industrial applications.

Hydraulic clamping elements can generate considerable forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of clamping lever there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

During loading and unloading of the fixture a collision with the clamping lever has to be avoided. Remedy: Mount position adaptor.

The height of the flange surface of the compact clamp and the height of the clamping surface on the workpiece should be matched so that the clamping height is approximately in the middle of the usable clamping stroke.

The compact clamp has to be checked regularly on contamination by swarf and has to be cleaned.

For dry machining, minimum quantity lubrication and in case of accumulation of very small swarf or particles, regular disassembly, cleaning and lubrication of the lever mechanism as per operating manual is required.

Operating conditions, tolerances and other data see data sheet A 0.100.

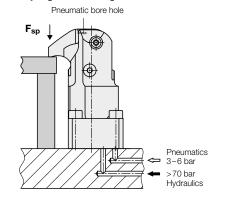
Pneumatic position monitoring

Pneumatic position monitoring

1. Pneumatic clamping monitoring

In the clamping area, the clamping lever slides downwards at two hardened surfaces of the body. In one of the surfaces there is the bore hole for the pneumatic clamping monitoring. The clamping lever overruns the bore hole, but does not completely close it. Only when the workpiece is really clamped, the clamping lever supports itself on the sliding surface and the bore hole will be firmly closed.

The clamping monitoring signals:


- The clamping lever is in the usable clamping range and
- a workpiece is clamped.

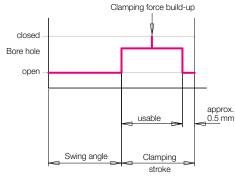
Important note

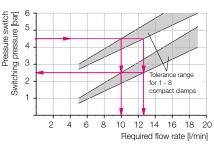
Required minimum pressures for clamping monitoring:

Hydraulics70 bar Pneumatics3 bar

Clamping monitoring

Example for clamping position

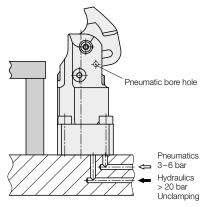

Required switching pressure
Pressure drop, if 1 compact
clamp is not clamped


4.5 bar
approx. 2 bar

As per diagram:

Required flow rate approx. 10-13 l/min (depending on the number of connected compact clamps)

Function chart



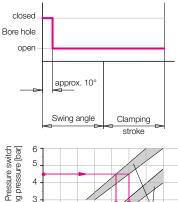
Required flow rate depending on the switching pressure of the pneumatic pressure switch for a pressure drop Δp 2 bar

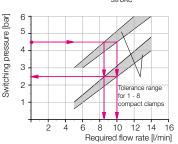
2. Pneumatic unclamping monitoring

A disk which is pre-stressed by a spring element is mounted at the side of the clamping lever. This disk closes a pneumatic bore hole in unclamping position.

Unclamping monitoring

Example for unclamping position


Required switching pressure 4.5 bar Pressure drop, if 1 compact


clamp is not unclamped approx. 2 bar

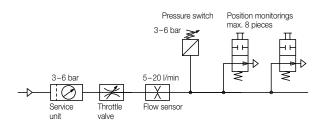
As per diagram:

Required flow rate approx. 8.5–10 l/min (depending on the number of

connected compact clamps)

Required flow rate depending on the switching pressure of the pneumatic pressure switch for a pressure drop Δp 2 bar

Monitoring by pneumatic pressure switch


For the evaluation of the pneumatic pressure increase standard pneumatic pressure switches can be used.

With one pressure switch up to 8 compact clamps can be controlled.

Important note

Pneumatic position monitorings are only process-safe, when air pressure and air volume are precisely adjusted.

For measuring the air volume, appropriate devices are available. Please contact us.

Metallic wiper edge on the piston

Flat Lever Clamps

Advanced Link System, pneumatic position monitoring optional single and double acting, max. operating pressure 250 bar

Application

The flat lever clamp is a compact hydraulic clamping element for fixtures with oil supply through drilled channels.

Due to the minimum space required, the flat lever clamp is especially suitable for fixtures with little space for the installation of hydraulic clamping elements.

The flat clamping lever allows machining of surfaces that are only a few millimetres above the clamping point.

Double-acting versions are advantageous for time and cycle-dependent installations, since the return stroke is effected in a precisely defined time and the pneumatic position monitoring of the clamping lever is possible.

Advanced Link System

The newly developed lever kinematics enable trouble-free, process-safe operation.

Description

When pressurising the flat lever clamp, a piston moves upwards against the rear edge of the clamping lever and swivels the clamping lever to the clamping position. The piston force is deviated by 180° onto the workpiece. The clamping force depends on the operating pressure and the length of the clamping lever.

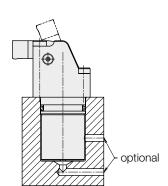
When unclamping the flat lever clamp, the clamping lever is swivelled back to the off-position by means of a hook-shaped carrier on the piston. Unclamping is made either hydraulically or when using a single-acting element with spring force.

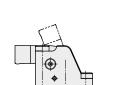
The pneumatic position monitoring allows the monitoring of both final positions of the clamping lever.

Important notes

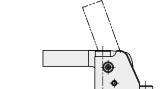
Flat lever clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. Considerable injuries can be caused to fingers in the effective area of the clamping arm.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices.


The clamping lever must not be impeded during swivelling. The clamping height h must be in the indicated tolerance range. To permanently secure correct functioning, the flat lever clamps must be regularly cleaned and greased. This applies especially for dry machining, minimum quantity lubrication and in case of accumulation of very small swarf.


Advantages

- Minimum dimensions
- Partially immersed body
- Mounting without pipes
- Unimpeded loading and unloading of the fixture.
- Workpiece clamping without any side loads
- Flat clamping lever can be swivelled into small recesses
- Long clamping lever (blank) adaptable to the workpiece
- Pneumatic control of the clamping lever position (optional only double acting)
- Metallic wiper edge for piston rod
- Swarf sheet retrofittable
- Mounting position: any


Installation and connecting possibilities

Single acting

Double acting

Long clamping lever (blank)

Available versions

 Single acting, without position monitoring

1.1 Without clamping lever 18297X0E00For the installation of a special clamping

lever, which can be produced from the clamping lever blank.

1.2 With clamping lever 18297X0EXX

The clamping lever with length L as per chart (page 3) is installed.

Double acting, without and with position monitoring

With the pneumatic position monitoring,

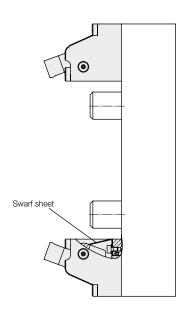
the clamping and/or unclamping position is queried directly at the clamping lever. A description can be found on page 5.

2.1 Without clamping lever, without position monitoring 18297X0D00

For the installation of a special clamping lever, which can be produced from the clamping lever blank.

2.2 Without clamping lever, with position monitoring 18297X3D00

The position monitoring can also be used with the clamping lever blank.


2.2 With clamping lever, without position monitoring 18297X0DXX

The clamping lever with length L as per chart (page 3) is installed.

2.3 With clamping lever, with position monitoring 18297X3DXX

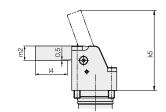
The clamping lever with length L as per chart (page 3) is installed.

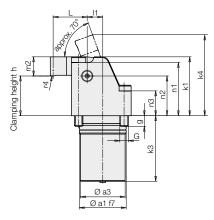
Application example

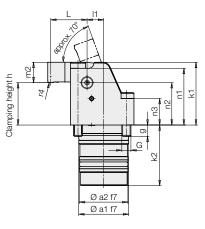
Installation instructions:

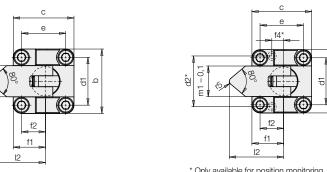
The flat lever clamp is suitable for any installation position. If the selected installation position can cause swarf nests to form in the swivel area of the clamping lever, the swarf sheet available as an accessory can be retrofitted.

Dimensions

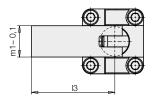

Single acting 1829 7X0 EXX

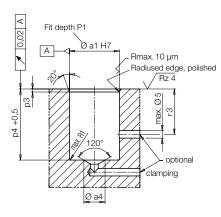

Double acting 18297X0DXX

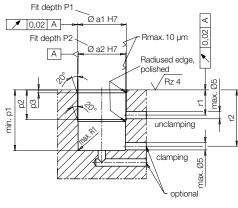

Long clamping lever (blank)


see accessories

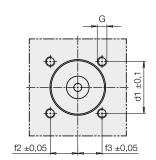
Material: 42 Cr Mo S4 + QT nitrocarburized

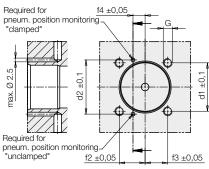



* Only available for position monitoring



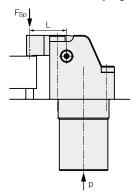
Location hole


Location hole


Fixing screws 10.9 - DIN 7984 Included in our delivery Tightening torque see chart.

Ω

2 O-rings 3 x 1 (part no. 3001 758) Included in our delivery


Pneumatic position monitoring see page 5

Technical data

Size			1	2	3	4
Clamping force at 250 bar	single acting	approx. [kN]	2.5	3.3	5.8	9.8
and length of clamping lever L	double acting	approx. [kN]	3.2	5	8.7	13
Piston Ø	single acting	[mm]	16	20	25	32
	double acting	[mm]	18/16	24/20	30/25	36/32
Piston stroke		[mm]	9.5	11.5	15	18
Oil volume clamping	single acting	[cm ³]	1.9	3.6	7.4	14.5
	double acting	[cm ³]	2.4	5.2	10.6	18.3
Oil volume unclamping	double acting	[cm ³]	0.5	1.6	3.3	3.9
Adm. flow rate	single acting	[cm ³ /s]	4	7	13	32
Adm. flow rate	double acting	[cm ³ /s]	5	10	20	40
min. operating pressure		[bar]	20	20	20	20
Max. pressure in return line	single acting	[bar]	0.5	0.5	0.5	0.5
Tightening torque (screws 10.9	DIN 7984)	[Nm]	7	12	29	58
Ø a1 H7/f7		[mm]	25	33	40	46
Ø a2 H7/f7		[mm]	24	32	38	44
Ø a3		[mm]	23.8	31.5	37.5	43.5
Ø a4		[mm]	14	14	14	32
b		[mm]	35	42	53	66
C.		[mm]	33	42	54	63
d1		[mm]	26	32	40	50
d2		[mm]	28	35.8	40	50
e		[mm]	24	32	41	47
f1		[mm]	17.5	22	29.5	37
f2		[mm]	13	17	23	29
f3		[mm]	11	15	18	18
f4		[mm]	6.5	8	12.5	15
G		[mm]	M5	M6	M8	M10
g		[mm]	11	7.5	11	13
h clamping height*		[mm]	23 +1.5/-1.2	28 + 2/-1.6	36 + 2.4/-1.9	41 +2.8/-2.3
k1		[mm]	32.5	41.5	54	64
k2		[mm]	34	40	46	48
k3		[mm]	38	46.2	45.3	63.5
k4 approx.		[mm]	45	57	72	83.5
k5 approx.		[mm]	59	75	94	110
L		[mm]	18	24	28	33
1		[mm]	10	11	16	20
12		[mm]	30	37	48	57
13		[mm]	45	56	71	85
14		[mm]	22	30	34	41.5
m1 –0.1		[mm]	16.9	20.9	25.9	32.9
m2		[mm]	9.5	13.5	18	22.5
n1		[mm]	29	37.5	49	57
n2		[mm]	23	28	36	41
n3		[mm]	9	17.5	24	32
Ø P1		[mm]	11	14	14	14
Ø P2		[mm]	34	32	34	40
p1 min.		[mm]	36	41	46.5	49
02		[mm]	17	20	20	23.5
p3		[mm]	2	2	3	3
p4 +0.5		[mm]	39	47	46.5	64.5
r1		[mm]	14	17	16.5	18.5
r2		[mm]	33	35 – 38	40 – 44	44.5 – 46
3		[mm]	16 – 36	17 – 44	17 – 44	18-61
r4		[mm]	4	4	8	8
r5		[mm]	2	2	4	4
Single acting, without positio	n monitoring					
Part no. without clamping leve			1829710E00	1829 720E00	1829 730E00	1829740E00
Weight, approx.		[kg]	0.263	0.544	1.040	1.861
Part no. with clamping lever le	enath L	נישן	1829710E18	1829720E24	1829 730 E28	1829740E33
Weight, approx.		[kg]	0.305	0.630	1.225	2.180
•	ning lever	ניישו	3.000	0.000	1.220	2.100
Double acting, without clamp			1000 710 000	1000 700 000	1000 700 000	1000740000
Part no. without position mon			1829710D00	1829 720 D00	1829730D00	1829740D00
Part no. with position monitor	iiig	Fl. m.1	1829713D00	1829723D00	1829 733 D00	1829743D00
Weight, approx.		[kg]	0.246	0.491	0.962	1.576
Double acting, with clamping						
			1829710D18	1829720D24	1829730D28	1829740D33
			1829713D18	1829723D24	1829733D28	1829743D33
	ring		0.288	0.577	1.147	1.895
Part no. with position monitor	ring	[kg]	0.200			
Part no. with position monitor Weight, approx.	ring	[kg]	0.200			
Part no. with position monitor Weight, approx. Accessories		[kg]		035/1026	03541027	035/11039
Part no. with position monitor Weight, approx. Accessories Part no. clamping lever length			03541025	03541026	03541027	03541028
Part no. without position mor Part no. with position monitor Weight, approx. Accessories Part no. clamping lever length Weight, approx.	ı L	[kg]	0354 1025 0.042	0.086	0.185	0.319
Part no. with position monitor Weight, approx. Accessories Part no. clamping lever length Weight, approx. Part no. long clamping lever (ı L	[kg]	0354 1025 0.042 0354 1029	0.086 0354 1030	0.185 0354 1031	0.319 0354 1032
Part no. with position monitor Weight, approx. Accessories Part no. clamping lever length Weight, approx.	ı L		0354 1025 0.042	0.086	0.185	0.319

Clamping force diagrams

Calculations of the clamping force

1. Length L of clamping lever is known

1.1 Admissible operating pressure

$$p_{adm} = \frac{B}{(C/L) + 1} \le 250$$
 [ba]

SA
$$p_{adm} = \frac{B^*}{(C/L) + 1} + 5 \le 250$$
 [bar]

1.2 Effective clamping force

DA
$$(p_{adm} > 250 \text{ bar}) \text{ Fsp} = \frac{A}{L} * 250 \text{ [kN]}$$

$$(p_{adm} \leq 250 \ bar) \quad F_{sp} = \ \frac{A}{L} \qquad * \ p$$

SA
$$(p_{adm} > 250 \text{ bar})$$
 $F_{sp} = \frac{A^*}{L} * (250 - 5)$ [kl $(p_{adm} \le 250 \text{ bar})$ $F_{sp} = \frac{A^*}{L} * (p - 5)$ [kl

$$(p_{adm} \le 250 \text{ bar})$$
 $F_{sp} = \frac{7}{L} * (p-5)$

2. Min. length of clamping lever

$$L_{min.} = \frac{C}{(B/p) - 1} \quad [mm]$$

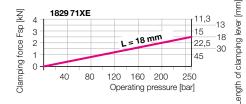
SA
$$L_{min.} = \frac{C}{\left[B^{\star}/(p-5)\right] - 1} \quad [mm]$$

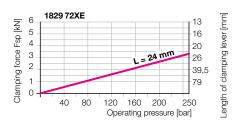
L, L_{min.} = length of clamping lever [mm] [bar]

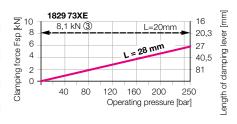
p, p_{adm.} = operating pressure

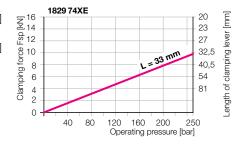
A, B, C = constants for DA A^* , B^* , C = constants for SA

= double acting


SA = single acting


Constants

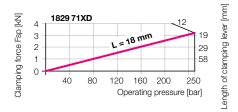

DA

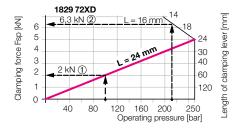

1829	71	72	73	74
Α	0.23	0.48	0.975	1.716
A *	0.184	0.323	0.663	1.322
В	402.78	385.41	401.77	397.73
B*	509.76	555	578.57	503.37
С	11	13	17	19.5

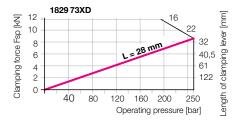
Single acting

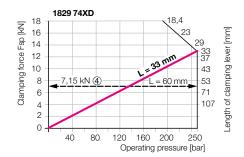
Example 1: Flat lever clamp 1829723D24 p = 100 bar; L = 24 mm (standard)

Effective clamping force
$$F_{Sp} = \begin{array}{cc} A \\ L \end{array} \star p = \frac{0.48}{24} \star 100 = 2 \text{ kN}$$


Example 2: Flat lever clamp 1829720D00 p = 210 bar


Min. length of clamping lever
$$L_{min} = \frac{C}{(B/p)-1} = \frac{13}{(385.41/210)-1} = 15.56 \rightarrow 16$$


Admissible operating pressure (review)
$$p_{adm} = \frac{B}{(C/L) + 1} = \frac{385.41}{(13/16) + 1} = 213 \text{ bar}$$


Effective clamping force at 210 bar
$$F_{Sp} = \frac{A}{L} \quad \star p = \frac{0.48}{16} \star 210 = 6.3 \text{ kN}$$

Double acting

Example 3: Flat lever clamp 1829730E00 Special clamping lever L = 20 mm

$$\begin{aligned} & \text{Admissible operating pressure} \\ & p_{\text{adm}} = \frac{B^{\star}}{(\text{C/L}) + 1} = \frac{578.57}{(17/20) + 1} = \frac{312 \text{ bar}}{\text{bar}!} > 250 \end{aligned}$$

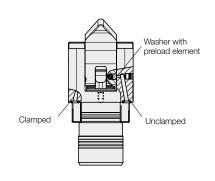
Effective clamping force at 250 bar
$$F_{Sp} = \frac{A^{\star}}{L} \star (p-5) = \frac{0.663}{20} \star (250-5) = 8.12 \text{ kN}$$

Example 4: Flat lever clamp 1829740**D**00 Special clamping lever L = 60 mm

Admissible operating pressure
$$p_{adm} = \frac{B}{(C/L) + 1} = \frac{397.73}{(19.5/60) + 1} = 300 \text{ bar} > 250$$

Effective clamping force at 250 bar
$$F_{Sp} = \frac{A}{L} \star p = \frac{1.716}{60} \star 250 = 7.15 \text{ kN}$$

Pneumatic position monitoring


Pneumatic position monitoring

The double-acting flat lever clamps

18297X3DXX

are delivered with optional position monitoring. Depending on requirements, the compressed air is supplied via one or two drilled channels (see page 2).

The required O-rings in the flange are included in the delivery.

Clamping range

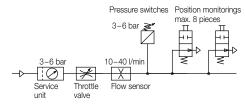
Unclamping position

Description

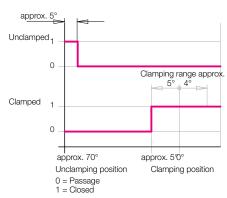
On both sides of the clamping lever is a bore hole in which a washer with an elastic preload element is positioned.

In the guide for the clamping lever in the housing, two bore holes are arranged so that the clamping or unclamping position of the clamping lever will be closed by the preloaded washer.

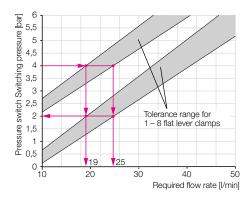
Important note!


When mounting the clamping lever, the preload elements and the washers must be inserted into the provided bore holes in the clamping lever.

These parts are included in the delivery of all double-acting flat lever clamps that are delivered without the clamping lever.


Monitoring by pneumatic pressure switch

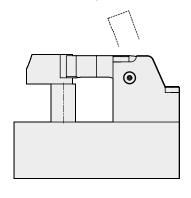
For the evaluation of the pneumatic pressure increase standard pneumatic pressure switches can be used.


Pneumatic port

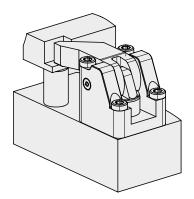
Function chart

Required flow rate depending on the switching pressure of the pneumatic pressure switch for a pressure drop Δp 2 bar

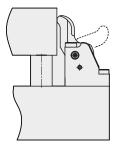
Example


Required switching pressure	4 bar
Pressure drop, if the clamping or unclamping position has not yet been reached.	2 bar
As per diagram: Required flow rate* 1 element	approx. 19 l/min
8 elements	approx. 25 l/min

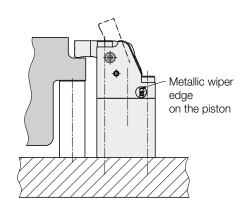
*) The pneumatic position monitoring is a metallic sealing system in which an air leakage of up to 1.5 l/min per element can occur when closed at 2 bar.


The amount of air leakage depends on the ambient conditions (cleanliness) and should be added to the required volume as per diagram.

Special clamping lever for further fields of application


Cranked clamping arm

Lateral clamping of workpieces to eliminate the clearance


Flat Lever Clamps

Advanced Link System, pneumatic position monitoring built-in and block-type, double acting, max. operating pressure 120 bar

Advantages

- Minimum dimensions
- Mounting without pipes
- Unimpeded loading and unloading of the fixture
- Workpiece clamping without any side loads
- Flat clamping lever can be swivelled into small recesses
- Long clamping lever (blank) adaptable to the workpiece
- Pneumatic monitoring of the clamping lever position
- Metallic wiper edge at the piston rod
- Swarf sheet retrofittable
- Mounting position: any

Application

The flat lever clamp is a compact hydraulic clamping element for fixtures with oil supply through drilled channels. The flat clamping lever allows machining of surfaces that are only a few millimetres above the clamping point.

Double-acting versions are advantageous for time and cycle-dependent installations, since the return stroke is effected in a precisely defined time and the pneumatic position monitoring of the clamping lever is possible.

This series can be directly connected to the low pressure hydraulics of machine tools with 70 to 120 bar.

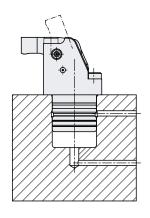
Advanced Link System

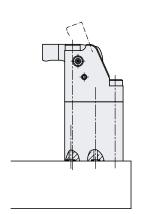
The newly developed lever kinematics enable trouble-free, process-safe operation.

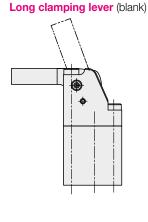
Description

When pressurising the hinge clamp, the piston moves upwards against the rear edge of the clamping lever and swivels the clamping lever to the clamping position. The piston force is deviated by 180° onto the workpiece. The clamping force depends on the operating pressure and the length of the clamping lever.

When unclamping the flat lever clamp, the clamping lever is swivelled back to the off-position by means of a hook-shaped carrier on the piston. The pneumatic position monitoring allows the monitoring of both final positions of the clamping lever.


Important notes


Flat lever clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. Considerable injuries can be caused to fingers in the effective area of the clamping arm.


The manufacturer of the fixture or the machine is obliged to provide effective protection devices. The clamping lever must not be impeded during swivelling. The clamping height h must be in the indicated tolerance range. To permanently secure correct functioning, the flat lever clamps must be regularly cleaned and greased. This applies especially for dry machining, minimum quantity lubrication and in case of accumulation of very small swarf.

Installation and connecting possibilities

Built-in type Block type

Available versions

1. Built-in type

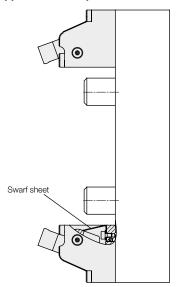
1.1 Without clamping lever 18294X3D00

For the installation of a special clamping lever, which can be produced from the clamping lever blank.

1.2 With clamping lever 18294X3DXX

The clamping lever with length L as per chart (page 3) is installed.

2. Block type


2.1 Without clamping lever 18295X3D00

For the installation of a special clamping lever, which can be produced from the clamping lever blank.

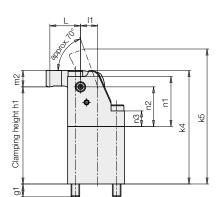
2.2 With clamping lever 18295X3DXX

The clamping lever with length L as per chart (page 3) is installed.

Application example

Installation instructions:

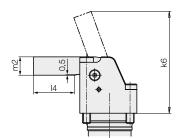
The flat lever clamp is suitable for any installation position. If the selected installation position can cause swarf nests to form in the swivel area of the clamping lever, the swarf sheet available as an accessory can be retrofitted.

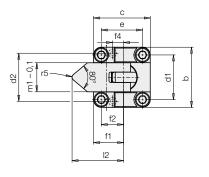

Dimensions

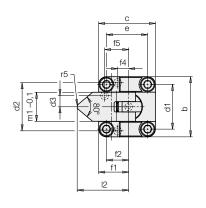
Built-in type 1829 4X3DXX

Camping height h m2

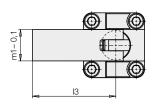
Piston Ø

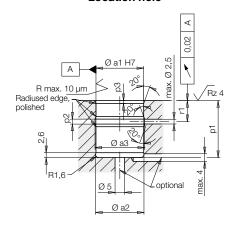

Block type 1829 5X3DXX

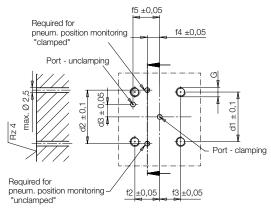



Long clamping lever (blank)

see accessories


Material: 42 Cr Mo S4 + QT nitrocarburized




G,

Location hole

Manifold-mounting surface

f4 ±0,05

f3 ±0,05

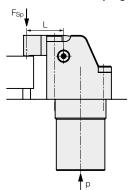
A - A

All required O-rings are included in the delivery. Spare O-rings see chart.

Pneumatic position monitoring see page 5.

Fixing screws 8.8 - DIN 912 and 7984 are included in the delivery.

Tightening torque as per chart on page 3.


f4 ±0,05

Technical data

Size			1	2	3	4
Clamping force approx.	at 120 bar	[kN]	2.96	4.27	7.41	9.75
and clamping lever length L	at 70 bar	[kN]	1.27	2.48	4.35	5.68
Piston / piston rod diameter		[mm]	25/16	32/20	40/25	45/32
Piston stroke		[mm] [cm ³]	9.5 4.66	11.5 9.25	15 18.85	18 28.63
Oil volume clamping Oil volume unclamping		[cm ³]	2.75	5.64	11.49	14.15
Admissible flow rate		[cm ³ /s]	5	10	20	40
Min. operating pressure		[bar]	20	20	20	20
Fightening torque (screws 8.8)		[Nm]	4.7	10	25	39
a1 H7/f7		[mm]	25	32	40	45
a2		[mm]	25.4	32.4	40.4	45.4
a3 + 0.2		[mm]	26	33	41	46
b		[mm]	35	42	53	66
C		[mm]	33	42	54	63
d1		[mm]	26	32	40	50
d2		[mm]	28	35.8	40	50
d3		[mm]	6.5	9.5	11.5	13
e		[mm]	24	32	41	47
f1		[mm]	17.5	22	29.5	37
f2		[mm]	13	17	23	29
3		[mm]	11	15	18	18
f4		[mm]	6.5	8	12.5	15
f5		[mm]	14	18	20	25
G		[mm]	M5	M6	M8	M10
g		[mm]	11	9.5	14	13
g1		[mm]	7.5	12	14	18
h clamping height*		[mm]	23+1.5/-1.2	28+2/-1.6	36+2.4/-1.9	41+2.8/-2.3
h1 clamping height*		[mm]	56.5+1.5/-1.2	68.5+2/-1.6	81+2.4/-1.9	91+2.8/-2.3
k1		[mm]	32.5	41.5 57	54 72	64 83.5
K2 approx. K3		[mm]	45 11.8	15.25	15.05	14.75
<4		[mm] [mm]	66	82	99	114.75
k5 approx.		[mm]	78.5	97.5	117	133.5
кб арргох.		[mm]	59	75	94	110
по арргох.		[mm]	18	24	28	33
1		[mm]	10	11	16	20
2		[mm]	30	37	48	57
3		[mm]	45	56	71	85
14		[mm]	22	30	34	41.5
m1 –0.1		[mm]	16.9	20.9	25.9	32.9
m2		[mm]	9.5	13.5	18	22.5
n1		[mm]	29	35.5	46	57
n2		[mm]	23	28	36	41
n3		[mm]	9	17.5	24	32
P1 min.		[mm]	10	12.5	12.5	13
p1+/-0.1		[mm]	29.8	35.8	39.7	43.1
p2		[mm]	2.6	2.6	3.2	3.2
03		[mm]	1.5	2.5	2.5	3
1		[mm]	11	13.9	13.3	13.5
r4		[mm]	4	4	8	8
r5		[mm]	2	2	4	4
Built-in type						
Part no. without clamping lever			1829413D00	1829 423 D00	1829433D00	1829443D00
Weight, approx.		[kg]	0.24	0.47	0.93	1.54
Part no. with clamping lever			1829413D18	1829 423D24	1829 433D28	1829443D33
Weight, approx.		[kg]	0.27	0.55	1.1	1.83
Block type						
Part no. without clamping lever			1829513D00	1829 523 D00	1829 533 D00	1829543D00
Weight, approx.		[kg]	0.41	0.79	1.53	2.59
Part no. with clamping lever			1829 5 13D18	1829 523 D24	1829 533D28	1829 5 43D33
Weight, approx.		[kg]	0.45	0.87	1.7	2.88
Accessories						
Part no. clamping lever length L			0354 1025	03541026	03541027	0354 1028
Weight, approx.		[kg]	0.042	0.086	0.185	0.319
Part no. long clamping lever (blank)			0354 1029	0354 1030	0354 1031	03541032
Weight, approx.		[kg]	0.066	0.14	0.29	0.537
Part no. swarf sheet			035381404	035381405	035381406	035381407
Spare O-rings						
for flange position monitoring			3x1	3x1	3x1	3x1
Part no.			3001 758	3001 758	3001 758	3001 758
for flange hydraulic port Part no.			3x1 3001 758	3x1 3001758	2.9×1.78 3000 019	3.68×1.78 3000876

Clamping force diagrams

Calculations of the clamping force

1. Length L of clamping lever is known

1.1 Admissible operating pressure

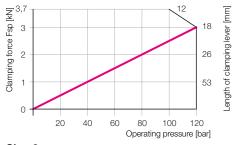
$$p_{adm} = \frac{B}{\frac{C}{L} + 1} \le 120$$
 [bar]

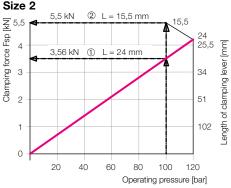
1.2 Effective clamping force

$$p_{adm} > 120 \text{ bar } F_{Sp} = \frac{A}{L} \times 120 \text{ [kN]}$$

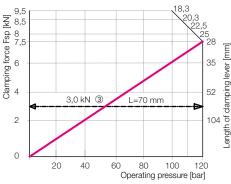
$$p_{adm} \le 120 \text{ bar } F_{Sp} = \frac{A}{L} \times p$$
 [kN]

2. Min. length of clamping lever

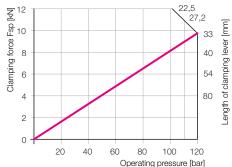

$$L_{min} = \frac{C}{\frac{B}{p} - 1}$$
 [mm]


L, $L_{min.}$ = length of clamping lever p, p_{adm.} = Operating pressure [bar] A, B, C, = constants

Constants


Size	1	2	3	4
Α	0.443	0.853	1.74	2.681
В	193.33	185	192.85	190.91
С	11	13	17	19.5

Size 1



Size 3

Size 4

Example 1: Flat lever clamp 1829423D24 Operating pressure 100 bar Standard clamping lever L = 24 mm

Effective clamping force at 100 bar

$$F_{Sp} = \frac{A}{L} \times p = \frac{0.853}{24} \times 100 = 3.55 \text{ kN}$$

Example 2: Flat lever clamp 1829523D00 Operating pressure 100 bar

Minimum length of clamping lever

$$L_{min} = \frac{C}{\frac{B}{p} - 1} = \frac{13}{\frac{185}{100} - 1} = 15.29 \rightarrow 15.5 \text{ mm}$$

Admissible operating pressure (review)

$$p_{adm} = \frac{B}{\frac{C}{L} + 1} = \frac{185}{\frac{13}{15.5} + 1} = 100 \text{ bar}$$

Effective clamping force at 100 bar
$$F_{Sp} = \ \ \frac{A}{L} \times p = \frac{0.853}{15.5} \times 100 \ = \ 5.5 \ kN$$

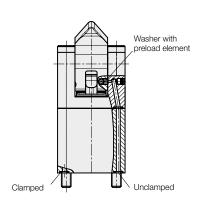
Example 3: Flat lever clamp 1829433D00 Special clamping lever L = 70 mm

Admissible operating pressure

$$p_{adm} = \frac{B}{\frac{C}{L} + 1} = \frac{192.85}{\frac{17}{70} + 1} = 155 \text{ bar} > 120 \text{ bar}!$$

Effective clamping force at 120 bar
$$F_{Sp} = \ \ \, \frac{A}{L} \times p = \frac{-1.74}{70} \times 120 \ = \ 3 \ kN$$

Pneumatic position monitoring


Pneumatic position monitoring

The double-acting flat lever clamps

1829 XX3DXX

are delivered with standard position monitoring. Depending on requirements, the compressed air is supplied via one or two drilled channels (see page 2).

The required O-rings in the flange are included in the delivery.

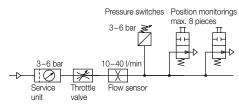
Unclamping position Clamping range

Description

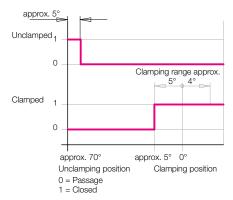
On both sides of the clamping lever is a bore hole in which a washer with an elastic preload element is positioned.

In the guide for the clamping lever in the housing, two bore holes are arranged so that the clamping or unclamping position of the clamping lever will be closed by the preloaded washer.

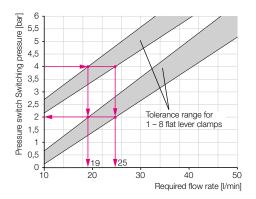
Important note!


When mounting the clamping lever, the preload elements and the washers must be inserted into the provided bore holes in the clamping lever.

These parts are included in the delivery of all double-acting flat lever clamps that are delivered without the clamping lever.


Monitoring by pneumatic pressure switch

For the evaluation of the pneumatic pressure increase standard pneumatic pressure switches can be used.


Pneumatic port

Function chart

Required flow rate depending on the switching pressure of the pneumatic pressure switch for a pressure drop Δp 2 bar

Example

Required switching pressure	e 4 bar
Pressure drop, if the clampir or unclamping position has repet been reached.	•
As per diagram:	Z bai
Required flow rate*	
1 element	approx. 19 l/min
8 elements	approx. 25 l/min

*) The pneumatic position monitoring is a metallic sealing system in which an air leakage of up to 1.5 I/min per element can occur when closed at 2 bar.

The amount of air leakage depends on the ambient conditions (cleanliness) and should be added to the required volume as per diagram.

Electric Swing Clamp

Top flange, position and clamping force monitoring, IO-Link connection optional DC voltage 24 V, minimum energy demand

Application

Electric swing clamps are used for clamping or holding of workpieces

- when the clamping and holding points shall be free for loading and unloading of the fixture
- when an extended functionality is required for automated systems
- when clamping elements have to be controlled individually
- where the clamping force must be maintained also after the separation from the energy supply

Thus electric swing clamps are particularly suited for:

- Packaging industry
- Test systems
- Special machines
- Assembly equipments and robotics
- Automatic manufacturing systems
- Clamping fixtures with workpiece loading via handling systems

Description

The electric swing clamp is driven by a wear-resistant brushless DC motor. The motor speed is transformed by means of a gear and a threaded spindle into the swing and stroke movement of the piston rod. For swinging the clamping arm by 180°, an axial stroke of only 3 mm is required. If the clamping arm collides during the swing motion with a workpiece, the mechanism is protected against overload. The direct current motor is automatically and immediately switched off. When unclamping, the clamping arm always swings back to the off-position.

Integrated control

The electronic control for the DC motor is on a board in the housing of the electric swing clamp

Electric connection

Power supply and signal exchange for external control are transmitted by two short cables with plug-type connector. Cable sockets are available for the customer's connection (see connection accessories).

Safe touch voltage

The used DC voltage 24 V is considered to be a "low voltage" and thus it is not dangerous for people in case of contact.

Advantages

- High clamping force
- Adjustable clamping force
- Camping force control
- Can be controlled individually or in common
- High operating safety by self-locking spindle drive
- Mechanical reclamping by Belleville springs
- Swing angle up to 180° available
- Overload protection device in the case of collisions with the clamping arm
- Electrical position monitoring and extended self-monitoring with diagnostic options
- Clamping stroke control possible
- Low voltage 24 V
- Leakage free
- Maintenance free (500,000 cycles)
- Ode class IP 67

Power supply

For motor and electronic control a DC voltage of 24 V with a residual ripple of max. 10 % is required.

For the DC motor, we recommend the use of a switching power supply with a current output in accordance with the specifications in the technical data per connected electric swing clamp. When operating several swing clamps at the same time, the line is to be enlarged correspondingly.

The electronic control has to be supplied by a separate power supply (24 V DC/100 mA).

Adjusting ranges

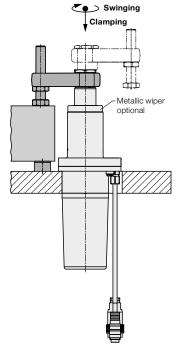
After removal of the protection cover, the following adjustments can be made on the control board:

- Clamping force
- Swing speed
- · Compensation of the clamping arm elasticity

The clamping force can also be adjusted via analogue input.

Important notes

Electric swing clamps are designed exclusively for clamping or holding of workpieces in industrial applications. They can generate very high clamping forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.


In the effective area of piston rod and clamping arm, there is the danger of crushing.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices. During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

For the positioning of workpieces, the admissible displacement force as per diagram on page 4 has to be considered.

If there is any danger that fluids penetrate into the electric swing clamp, the screw plug at the venting port G 1/8 has to be removed and a vent hose has to be connected. The other end of the hose has to be placed to an absolutely dry area. It is recommended to connect a dry positive air pressure protection with 0.2 bar.

Functional principle

Function control

Unclamped

Clamping arm in off-position and unclamping process completed

Clamped

- Clamping arm within clamping area and clamping force obtained
- Clamping stroke control possible by output signal

Diagnostic options

- Extensive review on error conditions
- Signalling via error code (flashing signal) internally on control board or via external interface signal
- Error messages can be reset
- Review display after 500,000 cycles

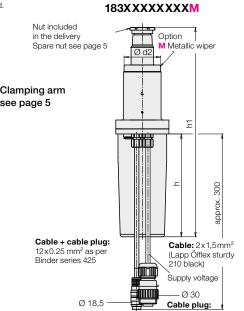
You will find a complete description in the supplied operating manual.

Optionally with cable and 4-pin connector for connection to an IO-Link master. Via this interface, commands and information are exchanged between the electric swing clamp and a higher-level control.

Advantages

- Reduced cabling effort
- Simplified commissioning
- More extensive diagnostic options
- Interference immunity through digital signal transmission
- All settings can be made conveniently via the IO-Link interface

Technical information

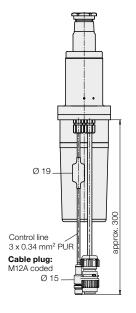

Further information on the application and operating conditions is available on request.

Dimensions Technical data

Off-position for 180 degree swing angle 183XXXXXXXX For indexing a pin can be inserted. (Included in the delivery) Nut included in the delivery Spare nut see page 5 Clamping stroke Swing stroke Option Metallic wiper [Ød. Clamping arm see page 5 g Š Screw-type conduit fitting 間 Ø r1 M12 x 1.5 Removable protection cover Control board Cable + cable plug: 12 x 0.25 mm² as pe Clamping arm can be fixed in Binder series 425 any desired position. Position of index pin "when clamped" Ø 18,5 Clamping position ±1° Connecting scheme 39,5

1833

30,5



1835

43,4

R = max. 6

IO-Link connection 183XXXXXXXXII 183XXXXXXXXMI

Connecting cable

Maximum permissible cable length 30 m

for supply of the DC motor			
Cable length	Cable cross section		
< 12 m	2 x 1.5 mm ²		
< 20 m	2 x 2.5 mm ²		
< 30 m	2 x 4 mm ²		

Accessory

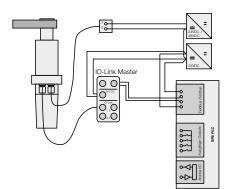
Hirschmann TYPE CA3LS 3+PE

control line

Cable socket customized to requirements 12 POL

Part no. 3141992

Cable socket 5 m cable 12 POL


Part no. 3823375 L 05000

Supply line

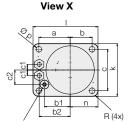
Cable socket Hirschmann CA3LD

Part no. 3141 991

IO-Link connection

IO-Link connection

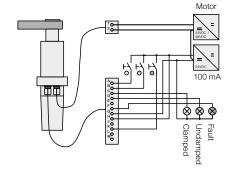
Supply voltage 24 V DC motor


+24 V DC

GND (ground)

Control line

- +24 V DC
- GND (ground)
- C/Q IO-Link



Venting screw or positive air pressure protection 1833 = M5

 $1835 = G \frac{1}{2}$

Connecting examples Minimum configuration

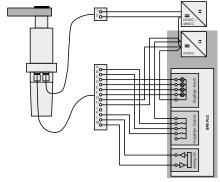
Supply voltage 24 V DC motor

- +24 V DC
- GND (ground) 2

Control line **Pin Function**

Command clamping

В Command unclamping


Message clamped

D Message unclamped Message error code

Command error reset

Programmable logic control PLC

Swing piston

Supply voltage 24 V DC motor

Pin Function

+24 V DC GND (ground)

Control line

Pin Function

Command clamping

Command unclamping Message clamped Message unclamped B

D

E Message number of cycles

Message error code G GND (ground)

+24 V DC (control)

Κ Command error reset

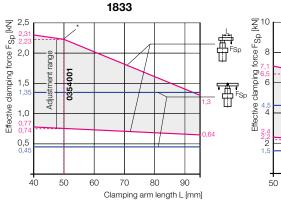
Analogue input clamping force (0–10 V) Analogue output clamping stroke (0–10 V)

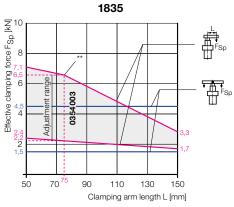
Actual issue see wh.roemheld-usa.com

Dimensions Technical data

Electric Swing Clamp		1833	1835
Axial pulling force adjustable	[kN]	0.9 to 2.7	3 to 9
Effective clamping force	[kN]	see dia	
Admissible displacement force	[kN]	see dia	
Clamping stroke (usable)	[mm]	13	20
Swing stroke (dsable)	[mm]	4	
Total stroke (mechanical)	[mm]	19	26
Swing angle	[°]	0°/90°/	
Clamping time approx.	[s]	3*	
Unclamping time approx.	[S]	3*	
Special clamping arm	[၁]	3	
Max. distance between piston axis and			
clamping point	[mm]	100	150
Max. radial torque M1	[Nm]	0.1	0.5
Max. moment of inertia	[kgm²]	0.0012	0.008
Nominal voltage	[V DC]	0.0012	
	[V DC]	22	
Operating range Residual ripple	[%]	~2 <1	
Max. current consumption	[70] [A]	8	15
Power consumption in standby mode approx.		1.2	
Duty cycle	[%]	25 (
Code class	[70]	20 (v IP (
	[hor]	0.3	••
Positive air pressure connection max.	[bar] [°C]	-5	
Ambient temperature Mounting position	[0]	preferably	
	الحما	3.5	8
Weight, approx.	[kg]	39.5	50.5
a b	[mm] [mm]	31.5	35.5
b1		30.5	41.5
b2	[mm]	36.5	41.5 50
	[mm]		
C	[mm]	46 11	67 9
c1 c2	[mm]	24	23.5
Ø d	[mm]	25	36
Ø d1	[mm]	40 s7	52 s6
Ø d2	[mm] [mm]	42.8	58.5
Ø e	[mm]	23.5	33.5
f	[mm]	30	40
g	[mm]	M18×1.5	M28×1.5
h	[mm]	125.5	164.5
h1 +2	[mm]	259.7	336.9
i	[mm]	M5	M8
k	[mm]	60	85
	[mm]	85	105
m -1	[mm]	115.2	146.4
n	[mm]	38.5	45
Øp	[mm]	5.5	9
Ør – 0.1	[mm]	45	60
Ør1	[mm]	55	78
t	[mm]	9	10
V	[mm]	22.3	22
v v1	[mm]	79	99.5
v2	[mm]	83.6	105
v3	[mm]	88.6	110
x +2	[mm]	134.2	172.4
V	[mm]	16.6	13.5
•	[]	10.0	10.0
Part no.		1022 A000 D 10VV	1025 C000 D06VV
Swing direction 90° clockwise Swing direction 90° counterclockwise		1833 A090 R 19XX 1833 A090 L 19XX	1835 C090 R 26XX 1835 C090 L 26XX
Swing direction 180° clockwise		1833 A180 R 19XX	1835 C180 R 26XX
Swing direction 180° counterclockwise		1833 A180 L 19XX	1835 C180 L 26XX
0 degree		1833 A0000 19XX	1835 C0000 26XX
3		XX = Options	
		01 = 10-Link	
		M = Metallic wipe	er
		MI = Metallic wipe	
		stano wpc	

* Further swing angles are available on request (min. 45°)
 ** Further technical data available on request
 *** For horizontal mounting position, please note page 6


Important note


To guarantee a process-safe application, all technical requirements and general conditions must be carefully checked.

Please contact our technical consultants (on site or directly in product management, Phone +49 6405 89 456).

Effective clamping force FSp as a function of the clamping arm length L

The effective clamping force is smaller the longer the clamping arm. For longer clamping arms, the clamping force must be reduced so that the admissible bending moment will not be exceeded. The adjustment of the clamping force is made on the control board or externally via the analogue input L. The default setting is suitable for the accessory clamping arm with contact bolt.

- * For clamping arm lengths > 50 mm, please observe the permissible setting parameters for the effective clamping force according to the operating instructions.
- ** For clamping arm lengths > 75 mm, please observe the setting parameters permitted for the effective clamping force as specified in the operating instructions.

Example

Accessory clamping arm 0354001: L = 50 mm As per diagram:

> Max. clamping force 2.2 kN Min. clamping force 0.74 kN

The clamping force is continuously adjustable.

Example

Accessory clamping arm 0354003: L = 75 mm As per diagram:

> Max. clamping force6.5 kN Min. clamping force 2.2 kN

The clamping force is continuously adjustable.

Permissible displacement force F_V for the horizontal positioning of a workpiece

S<clamping stroke The electric swing clamp can push, i.e. position a workpiece against fixed points. The permissible displacement force depends on the set clamping force and the length of the clamping arm. It equal to 15 % of the set clamping force.

A clamping arm with 50 mm centre distance to the clamping point is used. Trimmer F is set to 9. The trimmer E setting is not relevant for the calculation of the displacement force. According to the clamping force diagram, an effective clamping force is achieved at clamping point 2.2 kN. The permissible displacement force F_V is thus:

A clamping arm with 75 mm centre distance to the clamping point is used. Trimmer F is set to 9. The trimmer E setting is not relevant for the calculation of the displacement force. According to the clamping force diagram, an effective clamping force is achieved at clamping point 6.5 kN. The permissible displacement force F_V is thus:

$$F_V = F_{Sp} * 15 \% = 2.2 \text{ kN} * 0.15 = 0.33 \text{ kN}$$

 $F_V = F_{Sp} * 15 \% = 6.5 \text{ kN} * 0.15 = 0.98 \text{ kN}$

Example

Accessory clamping arm 0354001: L = 50 mm As per diagram:

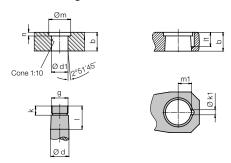
> Max. clamping force 2.2 kN Displacement force F_V 0.33 kN

With a friction coefficient $\mu = 0.4$, this is sufficient for a workpiece mass m:

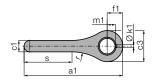
$$m = \frac{F_V}{g * \mu} = \frac{330 \text{ N}}{9.81 * 0.4} = 84 \text{ kg}$$

Example

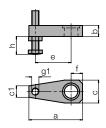
Accessory clamping arm 0354003: L = 75 mm As per diagram:


Max. clamping force 6.5 kN Displacement force F_V 0.98 kN

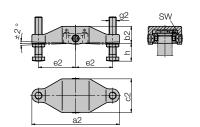
With a friction coefficient $\mu = 0.4$, this is sufficient for a workpiece mass m:

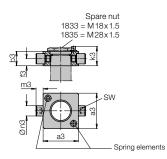

$$m = \frac{F_V}{g * \mu} = \frac{980 \text{ N}}{9.81 * 0.4} = 250 \text{ kg}$$

Accessory - clamping arm


Dimensions for special clamping arms and indexing

Clamping arm blank with indexing


Clamping arm without indexing Clamping arm with contact bolt


Clamping arm without thread g1

Double clamping arm complete with carrier $\mathsf{GGG}\ 40$

Carrier for double clamping arm 42CrV4 hardened and tempered

Electric Swing Clamp		1833	1835
a	[mm]	75	115
a1	[mm]	125	190
a2	[mm]	138	196
a3 ±0.1	[mm]	43	55
b	[mm]	16	23
b2	[mm]	28.5	38
$b3 \pm 0.1$	[mm]	16	23
С	[mm]	32	48
c1	[mm]	16	22
c2	[mm]	59	75
c3	[mm]	45	60
Ødf7	[mm]	25	32
Ø d1 +0.05	[mm]	19.8	31.85
е	[mm]	50	75
e2	[mm]	60	83
f	[mm]	16	25
f1	[mm]	22.5	30
f3	[mm]	7.5	11
g	[mm]	M18×1.5	M28×1.5
g1	[mm]	M10	M16
g2	[mm]	M10	M16
h min max	[mm]	10 to 64	15 to 79
k	[mm]	10	12
Ø k1 +0.1	[mm]	3	6
k3**	[mm]	21.5	29
1	[mm]	21	28
l1	[mm]	13	17
Øm	[mm]	24.5	34
m1 +0.05	[mm]	9.8	16
m3	[mm]	9	11
n	[mm]	4	5
Ø n3 g6	[mm]	10	16
r	[mm]	70	100
S	[mm]	52.7	92.3
SW	[mm]	5	8

Part no.

Clamping arm with contact bolt		0354001	0354003
Weight, approx.	[kg]	0.25	0.8
Moment of inertia	[kgm ²]	0.000320	0.002295
Radial torque	[Nm]	0.06	0.32
Clamping arm without thread g1 Weight, approx. Moment of inertia Radial torque	[kg] [kgm²] [Nm]	3921 016 0.2 0.00018 0.05	3921 017
Clamping arm blank Weight, approx.	[kg]	3548901A 0.35	3548902A 0.95
Moment of inertia	[kgm²]	0.00074	0.0035
Radial torque	[Nm]	0.00074	0.5000
Material: High alloy steel 1000 1200 N		0	0.0
Double clamping arm, complete*		0354131	0354132
Weight, approx.	[kg]	0.83	2
Moment of inertia	[kg·m²]	0.00120	0.00765
Carrier for double clamping arm		0354141	0354142
Weight, approx.	[kg]	0.16	0.46
Spare nut		3527014	3527015
Max. tightening torque	[Nm]	60	90
Weight, approx.	[kg]	0.03	0.05
Metallic wiper		0341231	0341 231
Indexing pin		3 m 6x6 3301 281	6 m6x12 3300325

- * Complete with threaded bolt and spring elements
- * Height stop surface for spring elements

Horizontal mounting position

The electric swing clamp can be operated with the accessory clamping arm with contact bolt (e) in every mounting position.

In the case of longer and heavier special clamping arms, the permissible radial torque M1 * is exceeded, which can lead to malfunctions and increased wear.

Remedy:

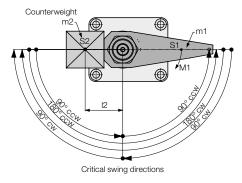
Provide the clamping arm with a counterweight as explained in the opposite example.

* see table page 3

Clamping arm S1 with weight compensation S2

Required counterweight m2 = $\frac{M1}{12}$ [kg]

M1 = First-order torque around the piston axis (control of the CAD model) [kgm]


m2 = Mass of counterweight [kg]

I2 = Centre of gravity of the mass m2 [m]

Important note

The additional counterweight increases the moment of inertia J around the piston axis, what can be easily determined by querying of the CAD model. To avoid an overload of the swing drive, the flow rate has to be reduced. The setting is described in the operating manual.

Mounting position - horizontal

Electric Swing Clamp

Parallel drive, position and clamping force monitoring, IO-link connection optional DC voltage 24 V, minimum energy demand

Application

Electric swing clamps are used for clamping or holding of workpieces

- when the clamping and holding points shall be free for loading and unloading of the fixture
- when an extended functionality is required for automated systems
- when clamping elements have to be controlled individually
- where the clamping force must be maintained also after the separation from the energy supply

Thus electric swing clamps are particularly suited for:

- Packaging industry
- Test systems
- Special machines
- Assembly equipments and robotics
- Automatic manufacturing systems
- Clamping fixtures with workpiece loading via handling systems

Description

The electric swing clamp is driven by a wear-resistant brushless DC motor. The motor speed is transformed by means of a gear and a threaded spindle into the swing and stroke movement of the piston rod. For swinging the clamping arm by 180°, an axial stroke of only 3 mm is required.

If the clamping arm collides during the swing motion with a workpiece, the mechanism is protected against overload. The direct current motor is automatically and immediately switched off. When unclamping, the clamping arm always swings back to the off-position.

Integrated control

The electronic control for the DC motor is on a board in the housing of the electric swing clamp.

Electric connection

Power supply and signal exchange for external control are transmitted by two short cables with plug-type connector. Cable sockets are available for the customer's connection (see connection accessories).

Safe touch voltage

The used DC voltage 24 V is considered to be a "low voltage" and thus it is not dangerous for people in case of contact.

Advantages

- High clamping force
- Adjustable clamping force
- Camping force control
- Can be controlled individually or in common
- High operating safety by self-locking spindle drive
- Mechanical reclamping by Belleville springs
- Swing angle up to 180° available
- Overload protection device in the case of collisions with the clamping arm
- Electrical position monitoring and extended self-monitoring with diagnostic options
- Clamping stroke control possible
- Low voltage 24 V
- Leakage free
- Maintenance free (500,000 cycles)
- Ode class IP 67

Power supply

For motor and electronic control a DC voltage of 24 V with a residual ripple of max. 10 % is required.

For the DC motor, we recommend the use of a switching power supply with a current output of 15 A per connected electric swing clamp. When operating several swing clamps at the same time, the line is to be enlarged correspondingly.

The electronic control has to be supplied by a separate power supply (24 V DC/100 mA).

Adjusting ranges

After removal of the protection cover, the following adjustments can be made on the control board:

- Clamping force
- Swing speed
- Compensation of the clamping arm elasticity

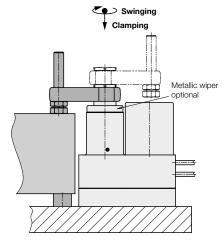
The clamping force can also be adjusted via analogue input.

Important notes

Electric swing clamps are designed exclusively for clamping or holding of workpieces in industrial applications. They can generate very high clamping forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm, there is the danger of crushing.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices.


During loading and unloading of the fixture and during clamping, collision with the clamping arm must be avoided.

For the positioning of workpieces, the admissible displacement force as per diagram on page 3 has to be considered.

If there is any danger that fluids penetrate into the electric swing clamp, the screw plug at the venting port G 1/8 has to be removed and a vent hose has to be connected. The other end of the hose has to be placed to an absolutely dry area.

It is recommended to connect a dry positive air pressure protection with 0.2 bar.

Functional principle

Function control

Unclamped

Clamping arm in off-position and unclamping process completed

Clamped

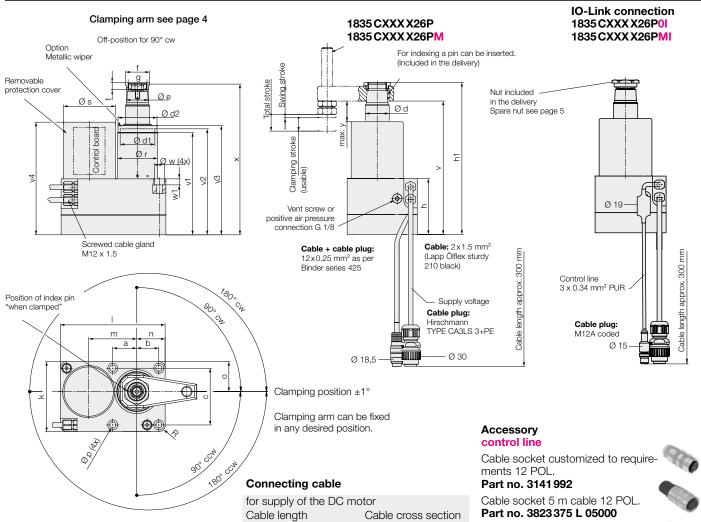
- Clamping arm within clamping area and clamping force obtained
- Clamping stroke control possible by output signal

Diagnostic options

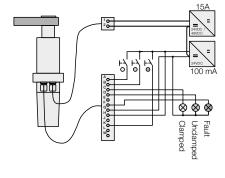
- Extensive review on error conditions
- Signalling via error code (flashing signal) internally on control board or via external interface signal
- Error messages can be reset
- Review display after 500,000 cycles

You will find a complete description in the supplied operating manual.

Optionally with cable and 4-pin connector for connection to an IO-Link master. Via this interface, commands and information are exchanged between the electric swing clamp and a higher-level control.


Advantages

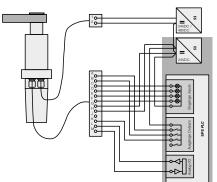
- Reduced cabling effort
- Simplified commissioning
- More extensive diagnostic options
- Interference immunity through digital signal transmission
- All settings can be made conveniently via the IO-Link interface


Technical information

Further information on the application and operating conditions is available on request.

Dimensions Technical data

Connecting examples Minimum configuration



Programmable logic control PLC

< 12 m

< 20 m

 $< 30 \, m$

2 x 1.5 mm²

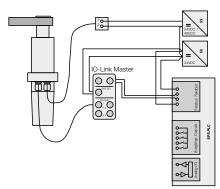
2 x 2.5 mm²

2 x 4 mm²

- +24 V DC
- GND (ground)

Control line

Pin Function


- Command clamping B Command unclamping
- С
- Message clamped Message unclamped
- Message number of cycles
- Message error code
- G
- GND (ground) +24 V DC (control) Н
- Κ Command error reset
- Analogue input clamping force (0-10 V)
- Analogue output clamping stroke (0-10 V)

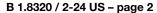
Supply line

Cable socket Hirschmann CA3LD

Part no. 3141 991

IO-Link connection

IO-Link connection


Supply voltage 24 V DC - 15 A

- +24 V DC
- 2 GND (ground)

Control line

- +24 V DC
- 3 GND (ground)
- C/Q IO-Link

Supply voltage 24 V DC - 15 A 1 +24 V DC

Command clamping

Message clamped

Message unclamped

Message error code

Command error reset

Command unclamping

GND (ground)

Control line

Pin Function

2

ВС

D

Dimensions Technical data

Electric Swing Clamp		1835
Axial pulling force adjustable	[kN]	39
Effective clamping force	[kN]	see diagram
Admissible displacement force	[kN]	see diagram
Clamping stroke (usable)	[mm]	20
Swing stroke	[mm]	4
Total stroke (mechanical)	[mm]	26
Swing angle	[°]	0°/90°/180° *
Clamping time approx.	[s]	3**
Unclamping time approx.	[s]	3**
Special clamping arm		
Max. clamping arm length	[mm]	150
Max. radial torque	[Nm]	0.5
Max. moment of inertia	[kgm²]	0.008
Nominal voltage	[V DC]	24
Operating range	[V DC]	22 to 30
Residual ripple	[%]	< 10
Max. current consumption	[A]	15
Power consumption in standby mode approx.	[W]	1.2
Duty cycle	[%]	25 (S3)
Code class		IP 67
Positive air pressure connection max.	[bar]	0.2
Ambient temperature	[°C]	−5+40
Mounting position		preferably vertical***
Weight, approx.	[kg]	10.75
a	[mm]	36
b	[mm]	33
C	[mm]	85
Ød	[mm]	36
Ø d1	[mm]	52
Ø d2	[mm]	58.5
Ø e	[mm]	33.5
f	[mm]	SW36
g	[mm]	M28 x 1.5
h	[mm]	83.8
h1 +2	[mm]	227.9
k	[mm]	105
I	[mm]	157
m	[mm]	72
n	[mm]	42.5
0	[mm]	45
Øp	[mm]	9
Ø r – 0.1	[mm]	60
R	[mm]	9
Øs	[mm]	78
v – 1	[mm]	199.9
v1	[mm]	153.2
v2	[mm]	158.8
v3	[mm]	163.8
v4	[mm]	168.8
Øw	[mm]	15
w1	[mm]	9
x +2	[mm]	225.9
у	[mm]	29
Part no.		

Swing direction 90° clockwise	1835 C090 R26PXX
Swing direction 90° counterclockwise	1835 C090 L26PXX
Swing direction 180° clockwise	1835 C180 R26PXX
Swing direction 180° counterclockwise	1835 C180 L26PXX
0 degree	1835 C000 026PXX

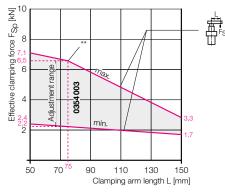
XX = Options
0I = IO-Link
M = Metallic wiper

MI = Metallic wiper + IO-Link

- * More swing angles are available on request (min. 45°).
- ** Additional technical data is available on request
- *** For horizontal mounting position, please see page 4.

Important note

To guarantee a process-safe application, all technical requirements and general conditions must be carefully checked.


Please contact our technical consultants (on site or directly in product management, Tel.: +49 6405 89 -456).

Effective clamping force F_{Sp} as a function of the clamping arm length \boldsymbol{L}

The effective clamping force is smaller the longer the clamping arm. For longer clamping arms, the clamping force must be reduced so that the admissible bending moment will not be exceeded.

The adjustment of the clamping force is made on the control board or externally via analogue input L.

The default setting of is suitable for the accessory clamping arm L = 75 mm.

** For clamping arm lengths > 75 mm, please observe the setting parameters permitted for the effective clamping force as specified in the operating instructions.

Example

Accessory clamping arm 0354003: L = 75 mm

As per diagram:

• max. clamping force 6.5 kN

• min. clamping force 2.2 kN

The clamping force is continuously adjustable.

Permissible displacement force F_V for the horizontal positioning of a workpiece

The electric swing clamp can push, i.e. position a workpiece against fixed points.

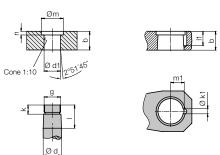
The permissible displacement force depends on the set clamping force and the length of the clamping arm. It equal to 15 % of the set clamping force.

A clamping arm with 75 mm centre distance to the clamping point is used. Trimmer F is set to 9. The trimmer E setting is not relevant for the calculation of the displacement force. According to the clamping force diagram, an effective clamping force is achieved at clamping point 6.5 kN. The permissible displacement force F_V is thus:

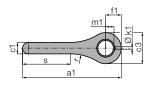
$$F_V = F_{Sp} * 15 \% = 6.5 \text{ kN} * 0.15 = 0.98 \text{ kN}$$

Example

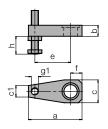
Accessory clamping arm 0354003: L = 75 mmAs per diagram:


Max. clamping force 6.5 kN
Displacement force F_V 0.98 kN

With a friction coefficient μ = 0.4, this is sufficient for a workpiece mass m:


$$m = \frac{F_V}{g * \mu} = \frac{980 \text{ N}}{9.81 * 0.4} = 250 \text{ kg}$$

Accessory - Clamping arm


Dimensions for special clamping arms and indexing

Clamping arm blank with indexing

Clamping arm without indexing Clamping arm with contact bolt

Clamping arm without thread g1

Electric Swing Clamp		1835
a	[mm]	115
a1	[mm]	190
b	[mm]	23
С	[mm]	48
c1	[mm]	22
c3	[mm]	60
Ød f7	[mm]	32
Ød1 +0.05	[mm]	31.85
е	[mm]	75
f	[mm]	25
f1	[mm]	30
9	[mm]	M28 x 1.5
g1	[mm]	M16
h minto max	[mm]	1579
k	[mm]	12
Ø k1 +0.1	[mm]	6
	[mm]	28
l1	[mm]	17
Øm	[mm]	34
m1 + 0.05	[mm]	16
n	[mm]	5
r	[mm]	100
S	[mm]	92.3

Part no.		
Clamping arm with contact bolt Weight, approx. Moment of inertia Radial torque	[kg] [kgm²] [Nm]	0354003 0.8 0.002295 0.32
Clamping arm without thread g1 Weight, approx. Moment of inertia Radial torque	[kg] [kgm²] [Nm]	3921 017 0.65 0.00134 0.20
Clamping arm blank Weight, approx. Moment of inertia Radial torque Material: High alloy steel 1000 1200 N/n	[kg] [kgm²] [Nm] nm²	3548 902 A 0.95 0.0035 0.5
Spare nut M28x1.5 Max. tightening torque Weight, approx.	[Nm] [kg]	3527 015 90 0.05
Metallic wiper		0341 231
Indexing pin		6 m 6x12 3300 325

Horizontal mounting position

The electric swing clamp can be operated with the accessory clamping arm 0354003 (e=75 mm) in every mounting position.

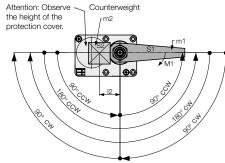
In the case of longer and heavier special clamping arms, the admissible radial torque M1 of 0.4 Nm will be exceeded, which can lead to malfunctions and increased wear.

Remedy:

Provide the clamping arm with a counterweight as explained in the opposite example.

Clamping arm S1 with weight compensation S2

Required counterweight m2 = [kg] 12


M1 = First-order torque around the piston axis (control of the CAD model) [kgm]

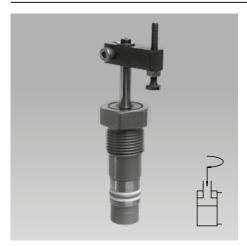
m2 = Mass of counterweight [kg] 12 = Centre of gravity of the mass m2 [m]

Important note

The additional counterweight increases the moment of inertia J around the piston axis, what can be easily determined by querying of the CAD model. To avoid an overload of the swing drive, the flow rate has to be reduced. The setting is described in the operating manual.

Mounting position - horizontal

Swing stroke


Clamping stroke

Mini Swing Clamps with Sturdy Swing Mechanism

threaded-body type,

double acting, max. operating pressure 150 bar

Hydraulic swing clamps are used for clamping

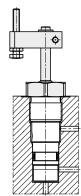
of workpieces, when it is essential to keep the

clamping area free of straps and clamping components for unrestricted workpiece loa-

Mini swing clamps are particularly suitable for machining of thin-walled workpieces, which

Mini swing clamps are an interesting alternative for pneumatic clamping elements, since they

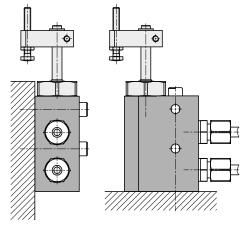
require only little clamping forces.


Advantages

- Minimum dimensions
- Double-acting function
- Sturdy swing mechanism
- Oil supply through drilled channels
- Built-in housing of tube connecting thread available
- Installation as cartridge type by accessory flange
- Simple fixing of clamping arm
- Clamping arm for clamping with minimum deformation available
- Unimpeded loading and unloading of the fixture
- Mounting position: variable
- Standard FKM seals
- Maintenance free

Installation and connecting possibilities

Threaded-body type

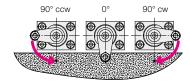

for horizontally-drilled channels

Pipe thread

Clamping principle

with accessory built-in housing

Description

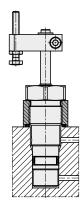

Application

ding and unloading.

require less space.

This double-acting mini swing clamp works as pull-type cylinder where a part of the total stroke is used to swing the piston.

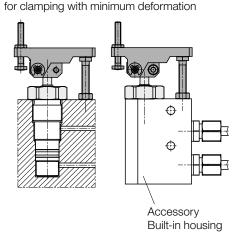
Clockwise and counterclockwise versions are available with an swing angle of 90, 60 and 45 degrees. The 0 degree version can be used as push and pull-type cylinder with anti-rotation piston.



The clamping arms are locked on the piston rod. A safety screw avoids axial displacement.

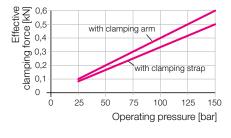
Important notes

- Considerable injuries can be caused to fingers during clamping and unclamping in the effective area of the clamping arm.
- Remedy: protection device with electrical locking.
- Operating conditions, tolerances and other data see data sheet A 0.100.


Installation as cartridge type with accessory fixing flange

Threaded-body type

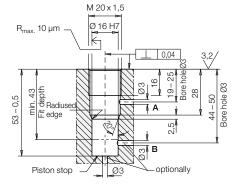
with accessory clamping strap


Technical data Dimensions • Accessories

Technical data Piston Ø 10 [mm] Rod Ø [mm] 6 Swing stroke [mm] 10 Clamping stroke [mm] 8 Total stroke [mm] 18 Effective piston area [cm²] 0,5 Clamping Unclamping 0,78 [cm²] Required oil per stroke 0.91 Clamping [cm³] Unclamping [cm³] 1,42 Max. oil flow rate Clamping [cm³/s] 6 Unclamping [cm³/s] 10 Min. operating pressure [bar] 25 Max. operating pressure [bar] 150 Max. pulling force [kN] 0,75 Effective clamping force [kN] see diagram Weight [kg] 0,12

Part numbers

Swing angle	Swing direction	Part no.
90°	CW	1848 115
90°	CCW	1848125
60°	CW	1848 135
60°	CCW	1848145
45°	CW	1848155
45°	CCW	1848 165
0°	-	1848 105

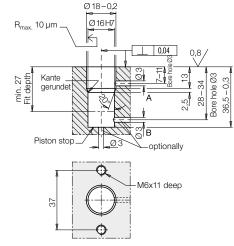

Clamping force diagram

Dimensions

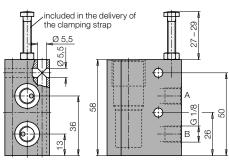
Porting details

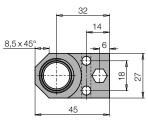
A = Clamping **B** = Unclamping

Accessory Clamping arm 0354 103 O-rings 21x2 are included in our delivery Socket head cap screw M6 x 20 DIN 912 (included in our

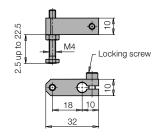

Cartridge-type hole

delivery)

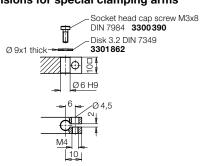

Accessory


0354410

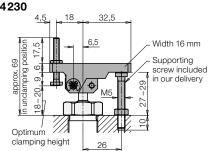
Fixing flange



Accessory Built-in housing 0346710



Accessory Clamping arm 0354103

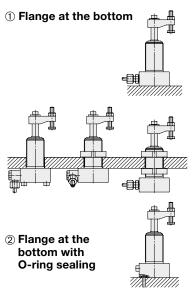

Dimensions for special clamping arms

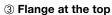
Accessory

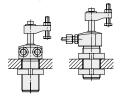
Clamping strap

for clamping with minimum deformation **0354230**

Compact Swing Clamps


bottom flange, top flange, threaded-body type, single acting, max. operating pressure 350 bar





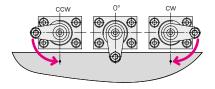
Connecting types

⑤ Threaded-body type

Flange at the top withO-ring sealing

Application

Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.


Function

This hydraulic clamping element is a pull-type cylinder where a part of the total stroke is used to swing the piston.

Swing direction

The units are available with clockwise and counterclockwise swing motion or without swing motion (0°)

Important notes

Operating conditions, tolerances and other data see data sheet A 0.100.

It is absolutely necessary to follow the instructions for venting of the spring area on data sheet G 0.110.

Version

Only single-acting elements are available.

Double-acting elements see data sheet B 1.8491.

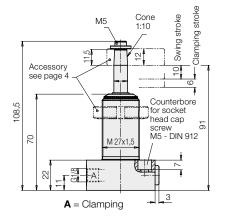
Adjustable swing direction

The swing direction of each swing clamp can also be changed, as described in the operating instructions.

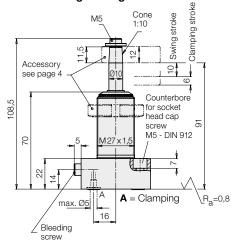
Standard swing angles are 45°, 60° and 90° \pm 2°.

Special angles on request.

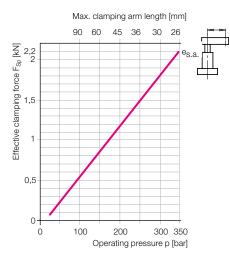
Other variants, as e.g. versions with metallic wiper on request.

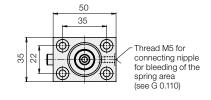

0°-Version

Use as pure pull-type cylinder with a piston which is secured against torsion and which allows eccentric load as per clamping force diagram.


Technical data Connecting types • Important notes

Technical data Piston Ø 14 [mm] Piston rod Ø 10 [mm] Effective piston area [cm²] 0.754 Oil volume per stroke [cm3] 1,2 Max. oil flow rate [cm³/s] 2.5 Min. oper. pressure 30 [bar] 350 Max. oper. pressure [bar] Max. force to pull [kN] 2,55 Effective clamping force [kN] see diagram Spring force (s.a.) [N] 40-89 Angle of rotation [°] $(0,45,60,90) \pm 2$ Swing stroke [mm] 10 Clamping stroke [mm] 6 Total stroke [mm] 16


Flange at the bottom


② Flange at the bottom with O-ring sealing

Clamping force diagram

Bleeding screw can be replaced by connecting nipple 3890092

Weight: 0,42 kg Part no. Swing Swina Single direction angle acting O° 1849001 1849011 90° CW 90° 1849021 CCW 60° 1849031 CW 60° 1849041 CCW 45° 1849051 CW 45° 1849061 CCW

Weight: 0,42	kg	
		Part no.
Swing	Swing	Single
angle	direction	acting
0°	_	1849002
90°	CW	1849012
90°	CCW	1849022
60°	CW	1849032
60°	CCW	1849042
45°	CW	1849052
45°	CCW	1849062

Spare O-ring (FKM)	
7 x 1,5	3001 077

Important notes

Material

FKM seals.

1. Danger of injury

against corrosion increased.

Hydraulic clamping elements can generate considerable forces.

Housing and piston are made of high alloy steel. By nitrating, wear is reduced and protection

Due to the 90° swing motion, the exact clamping and unclamping position cannot be determined in advance. Considerable injuries can be caused by squashing one's fingers in the effective area of the clamping arm. Remedy: protection device with electrical locking.

2. Maximum oil flow rate

In case of the maximum oil flow rate as per table the shortest possible clamping or unclamping time is 0.5 seconds.

If the flow rate of the pump divided by the number of swing clamps is higher than the indicated value in the table, the flow rate has to be throttled to avoid any overload and thereby high wear.

Throttling has to be made in the oil supply line to the swing clamp to rule out a possible pressure intensification. Use only flow control valves which allow oil return from the swing clamp without any impediments.

3. Unimpeded swing motion

This swing clamp does not have an overload protection device. Therefore the swing motion must not be impeded and the clamping arm may only contact the workpiece after completion of the swing stroke.

4. Clamping arm assembly

4.1 All types

When tightening and untightening the fixing screw, the clamping arm has to be backed up to avoid the introduction of moments to the piston rod and thereby any deterioration of the swing mechanism.

4.2 Threaded-body type

The clamping arm can only be fixed, after the housing is firmly screwed in, since the final position cannot be determined in advance.

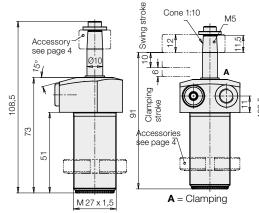
5. Adjustment of pressure screw

The pressure screw may only contact the workpiece after completion of the swing motion. When tightening and untightening the fixing screw, the clamping arm has to be backed up (see 4.1).

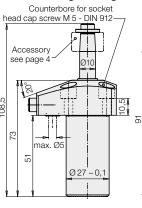
6. Special clamping arms

When using special clamping arms with other lengths, the corresponding operating pressures as shown in the clamping force diagram must not be exceeded.

If longer clamping arms will be used, not only the operating pressure but also the flow rate have to be reduced (see 2.)


7. Venting of spring area

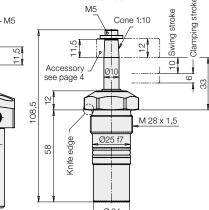
The spring area of single-acting swing clamps has to be vented to avoid troubles of functioning. A sintered metal air filter avoids penetration of contaminations.


If there is a possibility that cutting lubricants and coolants penetrate through the sintered metal air filter into the cylinder's interior, a vent hose has to be connected and be placed in a protected position. The different connecting possibilities are as follows:

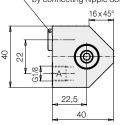
7.1 Flange at the top and at the bottom Instead of an air filter plug a fitting for connection of tubes and hoses may be used.

③ Flange at the top

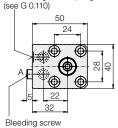
Flange at the top with O-ring sealing



Swing stroke


 $R_a = 0.8$

Cone 1:10


5 Threaded-body type

Bleeding screw can be replaced by connecting nipple 3890092

Thread M5 for connecting nipple for bleeding of the spring area

Weight: 0,35 kg

Part no.		
Single	Swing	Swing
acting	direction	angle
1849003	-	0°
1849013	CW	90°
1849023	CCW	90°
1849033	CW	60°
1849043	CCW	60°
1849053	CW	45°
1849063	CCW	45°

Weight: 0,42 kg

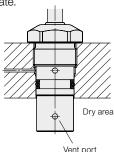
Part no.		
Single	Swing	Swing
acting	direction	angle
1849004	_	0°
1849014	CW	90°
1849024	CCW	90°
1849034	CW	60°
1849044	CCW	60°
1849054	CW	45°
1849064	CCW	45°

Max. seating torque Nm 100 Weight: 0.27 kg

Weight. 0,27 kg			
		Part no.	
Swing	Swing	Single	
angle	direction	acting	
0°	-	1849005	
90°	CW	1849015	
90°	CCW	1849025	
60°	CW	1849035	
60°	CCW	1849045	
45°	CW	1849055	
45°	CCW	1849065	

Spare O-ring (FKM) 7 x 1,5

3001077


001077 Scr

7.2 Flange with O-ring sealing

The connecting nipple 3610035 which fits to thread M5 is suitable for a plastic hose ND 6.

7.3 Threaded-body type

The air filter is integrated in the lower part of the housing. If the cylinders are mounted in plates as per drawing below (see figure), liquids must not penetrate.

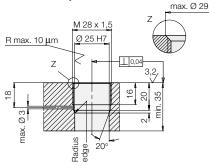
Installation in a pocket hole is only possible, if a vent hole is provided in a determined area (see drawing). Also this bore hole has to be protected against penetration of liquids.

8. Bleeding

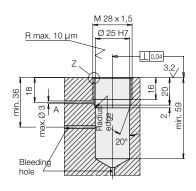
Air in the oil prolongs the clamping time considerably and leads to function troubles.

Therefore bleeding has to be effected during start up, as described as follows for the different types.

8.1 Flange at the bottom and at the top Loosen carefully the union nut of the tube at low oil pressure and pump until bubblefree oil comes out. Retighten the union nut.

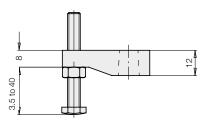

8.2 Flange with O-ring sealing

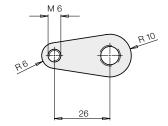
Loosen carefully the socket head cap screw M5 at low oil pressure and pump until bubble-free oil comes out. Retighten the screw.


8.3 Threaded-body type

There is no possibility for bleeding at the element itself. Remedy: plug the oil channels in the fixture body at the end. If required, loosen the plugs carefully and pump at low oil pressure until bubblefree oil comes out. Retighten the plugs.

Screw-in hole open



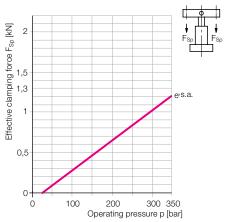

Screw-in hole closed

Accessories

Clamping arm assembly, complete max. 350 bar

Double clamping arm, complete Contact bolt – M 6 x 45 Part no. 3614138 88 0 25 72 72 88 30 30 30 30

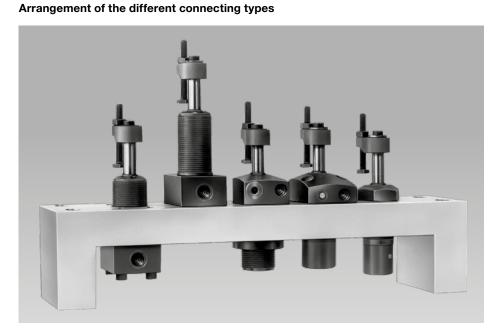
Part no. 0354057


art no. 035405

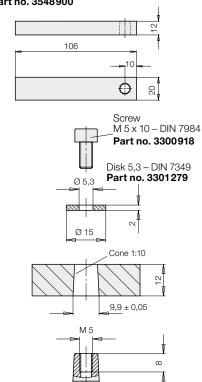
Clamping force diagram

Max. clamping arm length [mm] 90 60 45 36 30 26 Name of the second seco

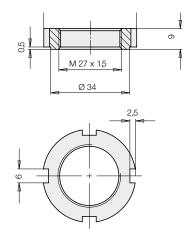
Part no. 0354082


Clamping force diagram

Operating pressure p [bar]


300 350

200



Connecting dimensions for special clamping arms

Clamping arm - blank **Part no. 3548900**

Flange nut as per DIN 1804

Part no. 3527076

Tube male stud coupling for G1/8

ND [bar]	Designation	Part no.
250	D 8L G 1/8 ED	9208075
500	D 8S G 1/8 ED	9208164

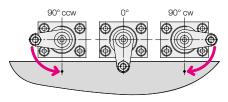
Thread reducing adaptor

ND [bar]	Designation	Part no.
400	GWR 1/8 -1/4	3613003

Compact swing clamps with robust sturdy swing mechanism

Bottom flange, top flange, threaded-body type, metal-protected wiper, double-acting, max. operating pressure 350 bar

Advantages

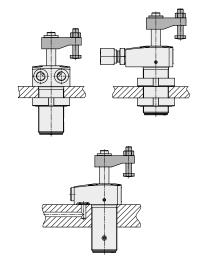

- High clamping force at low operating pressure
- Compact design
- Sturdy swing mechanism
- Metal-protected wiper
- FKM seals as standard
- Special swing angle in standard versions

Application

Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Swing direction

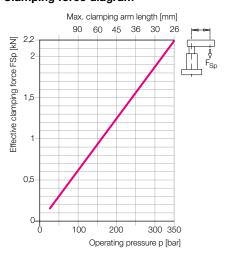
The swing clamps are available with clockwise or counterclockwise swing motion or without swing motion (0°).


Accessories see page 4

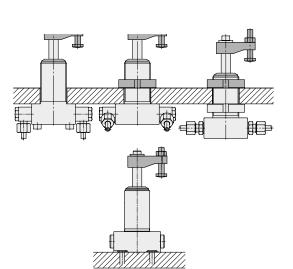
- Clamping arm
- Lock nut

Connecting types

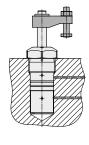
Top flange


pipe threads and drilled channels

Technical data

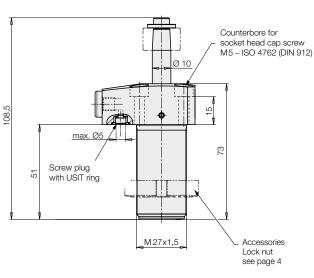

Piston Ø	[mm]	14
Rod Ø	[mm]	10
Effective piston area		
Clamping	[cm ²]	0.754
Unclamping	[cm ²]	1.54
Required oil per strok	кe	
Clamping	[cm ³]	1.2
Unclamping	[cm ³]	2.5
Max. flow rate		
Clamping	[cm ³ /s]	5
Unclamping	[cm ³ /s]	10
Min. operating press.	[bar]	30
Max. operating press.	[bar]	350
Max. pull force	[kN]	2.63
Effect. clamping force	[kN]	see diagram
Swing angle	[°]	$(0, 45, 60, 90) \pm 2$
Swing stroke	[mm]	8
Clamping stroke	[mm]	8
Total stroke	[mm]	16

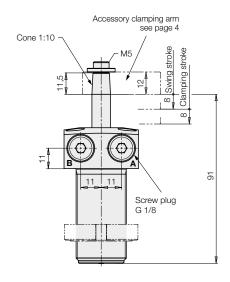
Clamping force diagram

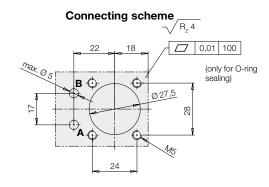


Bottom flange

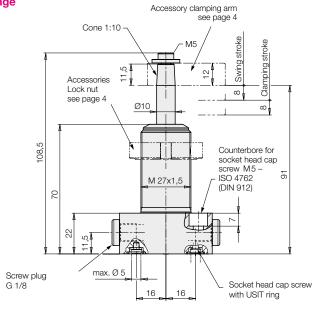
Pipe thread and drilled channels




Threaded-body type Drilled channels

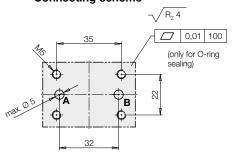

Operating conditions, tolerances and other data see data sheet A 0.100.

Top flange

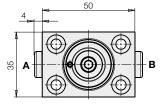


50 A = Clamping **B** = Unclamping Weight: 0.42 kg

Bottom flange

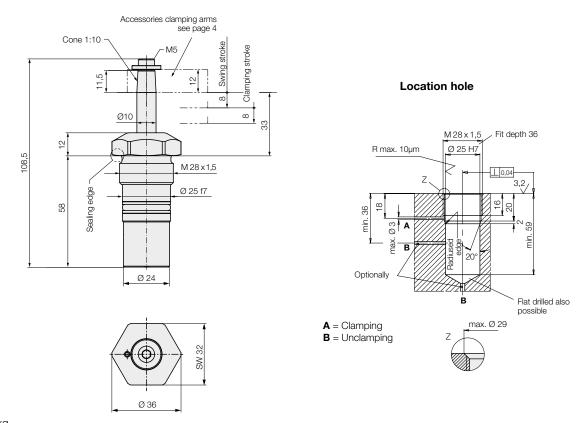


Delivery

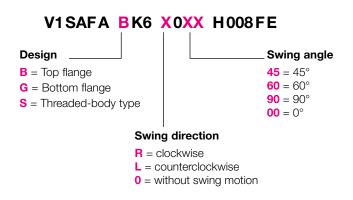

Socket head cap screws, screw plugs, and O-rings for the connection with drilled channels are included in the delivery.

Spare O-ring (FKM) $7 \times 1.5 \text{ mm}$ Part no. 3001077

Connecting scheme


A = Clamping **B** = Unclamping

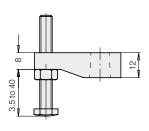
Weight: 0.42 kg

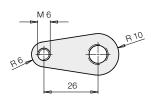

Operating conditions, tolerances and other data see data sheet A 0.100.

Threaded-body type

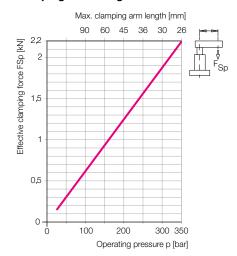
Weight: 0.27 kg

Code for part numbers

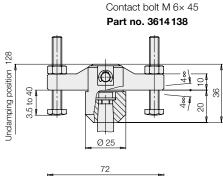

Ordering example 1	Ordering example 2	Ordering example 3	
Top flange = B Cw swing motion = R Swing angle 45° = 45	Bottom flange = G Ccw swing motion = L Swing angle 90° = 90	Threaded-body type = S Cw swing motion = R Swing angle 60° = 60	
Part no. V1SAFA BK6 R045 H008FE	Part no. V1SAFA GK6 L090 H008FE	Part no. V1SAFA SK6 R060 H008FE	

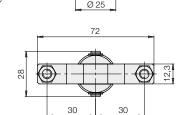

Accessories

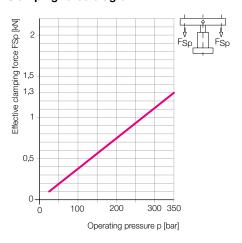
Clamping arm, complete


max. 350 bar

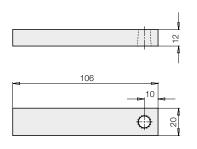
Part no. 0354057



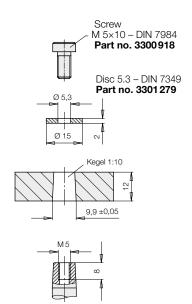

Clamping force diagram


Double clamping arm, complete

Part no. 0354082

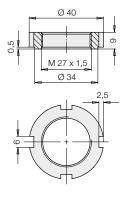


Clamping force diagram



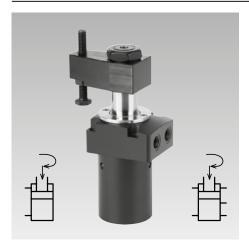
Clamping arm blank

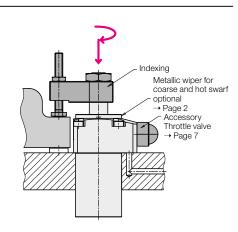
Part no. 3548900



Dimensions for special clamping arms

Lock nut as per DIN 1804


Part no. 3527076


Swing clamp with reinforced swing mechanism

Position monitoring optional: pneumatically integrated / electrically attachable Top flange type, double acting, max. operating pressure 70 bar

Advantages

- 4 sizes available
- Compact design partially recessible
- High clamping force already at 70 bar
- Extremely short clamping and unclamping
- Accessory throttle valve, screw-in
- Indexing of clamping arm
- Standard FKM wiper
- Metallic wiper optional
- Pneumatic position monitoring integrated for type 185 XP, standard
- Electrical position monitoring for type 185XQ, available as accessory
- Mounting position: any

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and

This series obtains very high clamping forces even at 70 bar and can directly be connected to the low-pressure hydraulics of the machine tools.

With the reinforced swing mechanism and the optional position monitorings these swing clamps are particularly suitable for:

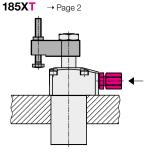
- · Automatic manufacturing systems with very short cycle times
- Clamping fixtures with workpiece loading by handling systems
- Transfer lines and assembly lines
- Test systems for motors, gears and axes
- Assembly lines
- Special machine tools

Description

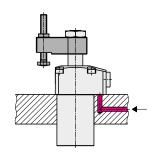
The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston.

The reinforced swing mechanism ensures that the angle position of the clamping arm remains the same even if a slight collision with the workpiece during loading and unloading or during clamping occurs.

The angle position of the clamping arm is fixed with a dowel pin.

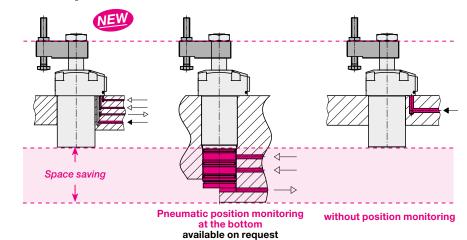

The FKM wiper at the piston rod can be protected against coarse and hot swarf by an optionally available metallic wiper (see page 2).

The version with extended switch rod is provided for mounting electrical position monitoring (accessory).

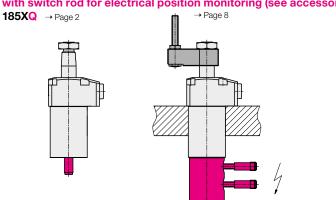

Important notes see page 2.

Installation and connecting possibilities Pipe thread

without position monitoring

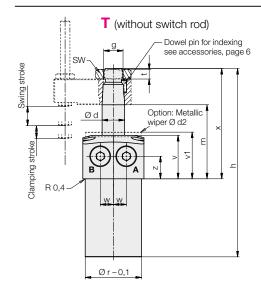


Drilled channels



with integrated pneumatic position control

185XP → Page 4

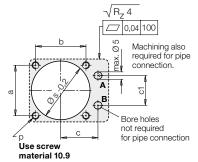


with switch rod for electrical position monitoring (see accessories)

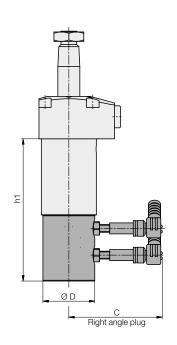
Versions T and Q

Dimensions

A = Clamping **B** = Unclamping

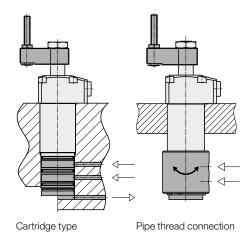

Swing direction ccw Swing direction ccw Swing angle 90° Off-position ±3° Indexing mark represented in clamping position

Q (with switch rod)


Nut included in the delivery.

Screw plugs and O-rings are included in the delivery Important note Both O-rings must also be inserted for pipe connection. * see swing angle \$\alpha < 90^\circ\$ Accessories: Position monitoring

Connecting scheme



Electrical position monitoring (→ page 8)

Pneumatic position monitorings

available on request

Swing angle

1. Swing angle 90° and 0° (standard)

Part no.

90° cw 185X X090 RXX 90° ccw 185X X090 LXX 0° 185X X000 0XX

2. Swing angle α < 90°

α = 15° to 75° in gradation of 5°

By insertion of a distance plate the return stroke of the piston is reduced and thus the swing angle is reduced.

Clamping stroke and clamping position remain the same. The swing stroke and the dimensions h, m and x are reduced by y:

 $y = (90^{\circ} - \alpha^{\circ}) * k$ (k see chart page 3)

Dimension 8 ± 0.5 is lengthened by the value y.

Example:

 Swing clamp
 1856T090L27

 Desired swing angle
 45° ccw

 Part no.
 1856T045L27

Shortening:

 $y = (90^{\circ} - 45^{\circ}) * 0.125 \text{ mm/}^{\circ} = 5.625 \text{ mm}$

3. Swing angle > 90°

Available on request!

Important notes

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm, there is the danger of crushing.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices. The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening or untightening the fixing nut.

During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

Remedy: Mount position adaptor.

Wiper system

The standard FKM wiper has a high chemical resistance against most cooling and cutting fluids. The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf.

It consists of a radially floating wiping disk and a retaining disk.

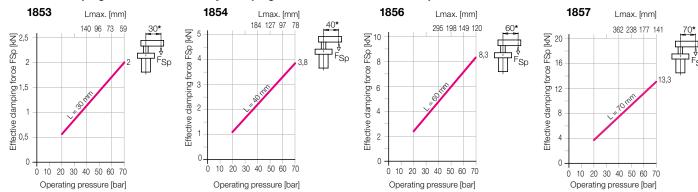
The metallic wiper can be delivered already mounted ("M") or as an accessory for retrofitting (part no. see page 7).

Attention

The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection effect.

If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk.

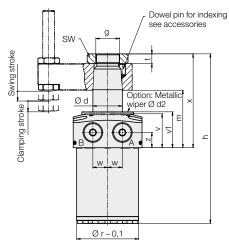
Versions T and Q

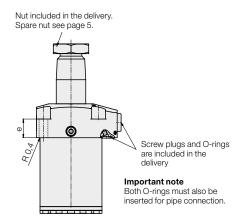

Technical data• Dimensions

Swing clamps			1853	1854	1856	1857
Max. pulling force		[kN]	2.35	4.46	9.9	16.1
Effective clamping	force	[kN]	see diag	gram or calculation of th	ne clamping force on page	ge 6
Clamping stroke		[mm]	8	8	10	10
Swing stroke		[mm]	8	13	17	19
Total stroke		[mm]	16	21	27	29
Min. operating pres	sure	[bar]	20	20	20	20
Max. flow rate	Clamping	[cm ³ /s]	13.5	33.5	96	167
Max. nov rato	Unclamping	[cm ³ /s]	20	53.5	145	255
Piston area	Clamping	[cm ²]	3.36	6.37	14.16	23
i istorrarea	Unclamping	[cm ²]	4.9	10.17	21.23	33.18
Oil volume / stroke	Oriciamping	[CITI]	5.4	13.4	38.3	66.7
	atualia					
Oil volume / return	stroke	[cm ³]	7.9	21.4	57.4	102
Piston Ø		[mm]	25	36	52	65
a		[mm]	30.5	40	56	68
b		[mm]	30.5	40	56	68
C		[mm]	22.5	28	36	42
c1		[mm]	18	24	36	45
Ød		[mm]	14	22	30	36
Ø d1		[mm]	M5x14.5 deep	M6 x 11.5 deep	M8x16.0 deep	M8x16.0 deep
Ø d2		[mm]	34.5	44.5	52.5	58.5
Ø d3 f7		[mm]	8	10	12	12
е		[mm]	20	19.5	19	23.5
SW		[mm]	SW 19	SW 27	SW 36	SW 46
		[mm]	M12	M18 x 1.5	M24 x 1.5	M30x1.5
g G		[i i ii i ij	G 1/8	G 1/8	G 1/4	G 1/4
h		[mm]	117	149	178.5	203.5
h1		[mm]	90.5	110	132	141
k		[mm/°]	0.056	0.095	0.125	0.125
L		[mm]	38	50	70	86
L1		[mm]	48	60	82	96
m		[mm]	46	54	64.5	72.5
n		[mm]	19	25	35	43
р		[mm]	M4 (10.9)	M5 (10.9)	M8 (10.9)	M10 (10.9)
Ø p1		[mm]	4.3	5.5	9	11
p2		[mm]	4	5	7	S
p3		[mm]	3	3	6	7
Ør -0.1		[mm]	35	47	63	78
Øs-0.2		[mm]	36	48	64	79
t		[mm]	6	9	10	12
V		[mm]	27	29.5	34.5	39
v1		[mm]	29	31.5	36.5	41
W		[mm]	8.1	11	15	19
X		[mm]	68.5	88	101.5	119.5
Z		[mm]	14	13.5	15.5	15.5
Weight, approx.		[kg]	0.7	1.5	3.0	5.0
Part no.	Swing direction 90° cv		1853 X090 R16M	1854X090R21M	1856 X090 R27M	1857 X090 R29M
	Swing direction 90° co		1853 X090 L16M	1854X090L21M	1856X090L27M	1857 X090 L29M
	0 degree		1853 X000 016M	1854X000021M	1856 X000027M	1857 X000029M
Spare O-ring	5 40g100	[mm]	7x1.5	7×1.5	8x1.5	8x1.5
Part no.		[i i ii i ij	3000342	3000342	3000343	3000343
						M30x1.5
Spare nut DIN 936		[N I:1	M12	M18 x 1.5	M24 x 1.5	
Tightening torque		[Nm]	12	30	62	110
Part no.			3302115	3301663	3302104	3302139

Code letter X see page 2

Metallic wiper \mathbf{M} = option (see page 2)

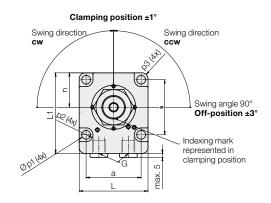

Effective clamping force with accessory clamping arm as a function of the oil pressure

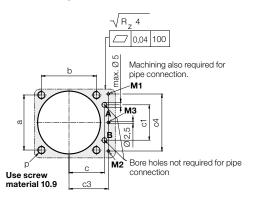


^{*} Clamping force for other lengths see page 6

Dimensions • Pneumatic position monitoring

P (with integrated pneumatic position monitoring)

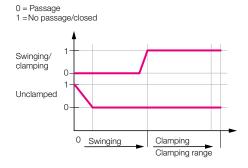



Connecting scheme

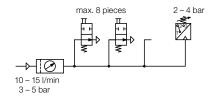
A = ClampingB = UnclampingM1 = Clamped (pneumatic)

M2 = Unclamped (pneumatic)

M3 = Outlet air (pneumatic)


Pneumatic position monitoring Application

The pneumatic position monitoring signals the following conditions by closing two bore holes:


- Piston extended and clamping arm in off-position.
- 2. Piston in clamping area and clamping arm in clamping position.

For each control function, a pneumatic line has to be provided at the clamping fixture.

Pneumatic diagram

Monitoring by pneumatic pressure switch

For the evaluation of the pneumatic pressure increase, standard pneumatic pressure switches can be used. With one pressure switch up to 8 position monitorings can be monitored. Note that reliable functioning of pneumatic monitoring is only guaranteed if the throttled air pres-

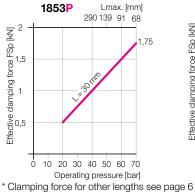
sure and air flow rate are throttled.

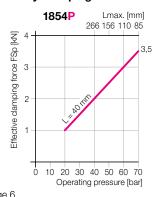
Technical data

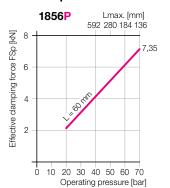
Port	Drilled channels
Nominal diameter	2 mm
Max. air pressure	10 bar
Range of operating pressure	3-5 bar
Differential pressure*) at 3 – 5 bar system pressure	min. 1.5 bar
Air flow rate	10- 15 l/min

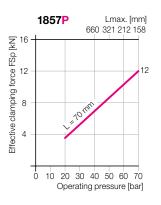
*) Minimum pressure difference, if one or several position monitorings are not operated

Version P


Technical data• Dimensions


Swing clamps			1853P	1854P	1856P	1857P
Max. pulling force	(70 bar)	[kN]	2.35	4.46	9.9	16.1
Effective clamping	force	[kN]	see diagra	am or calculation of the	clamping force on page	
Clamping stroke		[mm]	8	8	10	10
Swing stroke		[mm]	8	9	11	15
Total stroke		[mm]	16	17	21	25
Min. operating pres		[bar]	20	20	20	20
Min. clamping and	unclamping times	[s]	0.5	0.5	0.5	0.5
Max. flow rate	Clamping	[cm ³ /s]	10.8	21.6	60	115
	Unclamping	[cm ³ /s]	15.8	34.6	89.2	166
Piston area	Clamping	[cm²]	3.36	6.37	14.16	23
	Unclamping	[cm²]	4.9	10.17	21.23	33.18
Oil volume / stroke		[cm³]	5.4	10.8	29.8	57.5
Oil volume / return	stroke	[cm ³]	7.9	17.3	44.6	83
Piston Ø		[mm]	25	36	52	65
а		[mm]	30.5	40	56	68
b		[mm]	30.5	40	56	68
С		[mm]	22.5	28	36	42
c1		ľmmĺ	18	24	36	45
c3		[mm]	21	28	40	44.5
c4		[mm]	31.8	41	58	67
Ød		[mm]	14	22	30	36
Ø d2		[mm]	34.5	44.5	52.5	58.5
e		[mm]	20	19.5	19	23.5
SW		[mm]	SW 19	SW 27	SW 36	SW 46
		[mm]	M 12	M18x1.5	M24x1.5	M30x1.5
g G		prary	G 1/8	G 1/8	G 1/4	G 1/4
h		[mm]	116.5	145	172.5	199.5
L		[mm]	38	50	70	86
L1		[mm]	48	60	82	96
			45.5	50	59	68.5
m		[mm]	45.5	25	35	
n		[mm]				43
p 01		[mm]	M4 (10.9)	M5 (10.9)	M8 (10.9)	M 10 (10.9)
Ø p1		[mm]	4.3	5.5	9	11
Ø p2		[mm]	4	5	7	9
p3		[mm]	3	3	6	7
Ør -0.1		[mm]	35	47	63	78
Øs-0.2		[mm]	36	48	64	79
t		[mm]	6	9	10	12
٧.		[mm]	27	29.5	34.5	39
v1		[mm]	29	31.5	36.5	41
W		[mm]	8	11	15	19
X		[mm]	68	84	95.5	115.5
Z		[mm]	14	13.5	15.5	15.5
Weight, approx.		[kg]	0.7	1.5	3.2	5.1
Part no.	Swing direction cw		1853PXXR16	1854PXXR17	1856PXXR21	1857PXXR25
	Swing direction ccw		1853PXXL16	1854PXXL17	1856PXXL21	1857PXXL25
	0°		1853P00016	1854P00017	1856P00021	1857P00025
Chara O rina	2 y budrouline	[mm]	Ev.1 E	7.15	0.45	0v1 E
Spare O-ring	2 x hydraulics	[mm]	5x1.5	7x1.5	8x1.5	8x1.5
Part no.	0	F 3	3000340	3000342	3000343	3000343
Spare O-ring	3 x pneumatics	[mm]	3x1	3x1	2.9 x 1.78	2.9x 1.78
Part no.			3001758	3001758	3000019	3000019
Spare nut DIN 936			M12	M18x1.5	M24x1.5	M30x1.5
Tightening torque		[Nm]	12	30	62	110
Part no.			3302115	3301663	3302104	3302139


Length correction value for h, m, x, total stroke and swing stroke


Swing angle	Part no.	1853P	1854P	1856P	1857P	Example: 1854P45R17
90°	185XP90XXX	0	0	0	0	h 145 -4.7 = 140.3
60°	185XP60XXX	-3.5	-3.7	-4.9	-6.3	m 50 $-4.7 = 45.3$
45°	185XP45XXX	-4.5	-4.7	-6.2	-8.2	$\mathbf{x} 84 - 4.7 = 79.3$
0°	185XP000XX	0	0	0	0	Total stroke 17 $-4.7 = 12.3$
With metallic wiper ¹⁾	185XPXXXXXM					Swing stroke 9 $-4.7 = 4.3$
1) Wiper system, see page	2					-

Effective clamping force with accessory clamping arm as a function of the oil pressure

ROEMHELD North America

Actual issue see wh.roemheld-usa.com/B1850

Calculation of the flow rate • Calculation of the clamping force

Admissible flow rate

With the accessory clamping arm and the admissible flow rate as per the chart, the shortest clamping time is approx. 0.5 seconds.

Longer special clamping arms have a higher torque of inertia. To avoid an overload of the swing mechanism, the flow rate has to be reduced:

$$Q_L = Q_e * \sqrt{\frac{J_e}{J_L}} cm^3/s$$

Q = Flow rate as per chart

 $Q_L^e = Flow rate with special clamping arm$

= Torque of inertia accessory clamping arm

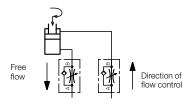
J = Torque of inertia special clamping arm

If the torques of inertia are not known, the admissible flow rate can be determined according to the following example:

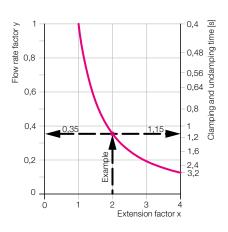
Conditions: The special clamping arm is longer, has however the form (cross section) of the accessory clamping arm, as shown on page 6.

Example: Swing clamp 1853T090R16

 $I = 60 \, \text{mm}$


e = 30 mm as per above chart

 $Q_0 = 13.5 \text{ cm}^3/\text{s}$


1. Extension factor
$$x = \frac{L}{e} = \frac{60 \text{ mm}}{30 \text{ mm}} = 2$$

- 2. Flow rate factor as per diagram \rightarrow y = 0.35
- 3. Max. flow rate $Q_1 = y * Q_2 = 0.35 * 13.5 cm^3/s = 4.7 cm^3/s$
- 4. Min. clamping time as per diagram → approx. 1.15 s

Throttling of the flow rate

Adm. flow rate and clamping time as a function of the clamping arm extension

Clamping force calculation

The clamping force diagram shows the effective clamping force with accessory clamping arm (L = e).

Versions T and Q: see page 3

Version P: see page 5

With longer clamping arms (L > e) the degree of efficiency is reduced. This is considered in the following calculation.

The constants (A-E) for the 4 sizes are shown in the following charts.

Versions T and Q

Constant	1853	1854	1856	1857
Α	29.68	15.68	7.06	4.35
В	0.177	0.069	0.023	0.013
С	102.9	260.5	853.8	1596
D	3053	4087	6026	6939
E	18.2	17.86	19.55	20.86

Version P

Constant	1853	1854	1856	1857
Α	29.68	15.68	7.06	4.35
В	0.343	0.108	0.041	0.021
С	90	240	756	1442
D	2671	3763	5335	6270
E	30.8	25.9	31	30.5

Effective clamping force

$$F_{Sp} = \frac{p}{A + (B * L)} \le F_{adm.}$$
 [kN]

Admissible clamping force*)

$$F_{adm} = \frac{C}{I}$$
 [kN]

Admissible operating pressure
$$p_{adm} = \frac{D}{L} + E \le 70 \hspace{1cm} [bar]$$

L = special length [mm] p = pressure [bar]

*) With a desired clamping arm length L the clamping force must not exceed the admissible value.

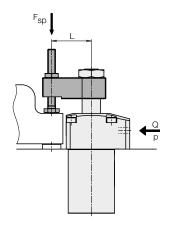
Example: Swing clamp 1853T090R16 Special clamping arm L = 60 mm

1. Admissible clamping force*)

$$F_{adm} = \frac{C}{L} = \frac{102.9}{60} = 1.71 \text{ kN}$$

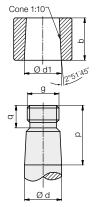
2. Admissible operating pressure
$$p_{adm} = \frac{D}{L} + E = \frac{3053}{60} + 18.2 = 69 \text{ bar } < 70$$

3. Effective clamping force
$$F_{Sp} = \frac{p}{A + (B * L)} = \frac{69}{29.68 + (0.177 * 60)} = 1.71 \text{ kN}$$

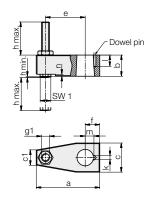

Example: Swing clamp 1853 P090 R16 Special clamping arm L = 70 mm

1. Admissible clamping force*)
$$F_{adm} = \frac{C}{L} = \frac{90}{70} = 1.29 \text{ kN}$$

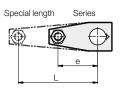
2. Admissible operating pressure


$$p_{adm} = \frac{D}{L} + E = \frac{2671}{70} + 30.8 = 69 \text{ bar } < 70$$

3. Effective clamping force
$$F_{Sp} = \frac{p}{A + (B * L)} = \frac{69}{29.68 + (0.343 * 70)} = 1.29 \text{ kN}$$



Accessory Clamping arm • Throttle valve


Dimensions for special clamping arms

Clamping arm with contact bolt

Special clamping arm

Flow rate and clamping force calculation, see page 6

Swing clamps		1853	1854	1856	1857
a	[mm]	48	65	96	114
b	[mm]	16	25	27	35
С	[mm]	22	34	52	60
c1	[mm]	12	19	31	36
Ød	[mm]	14	22	30	36
Ø d1 -0.05	[mm]	14	22	30	36
е	[mm]	30	40	60	70
f	[mm]	11	17	25	30
g	[mm]	M12	M18 x 1.5	M24 x 1.5	M30x1.5
g1	[mm]	M6	M8	M12	M16
h min.	[mm]	1	1	1	1
h max.	[mm]	40	46	54	63
Ø k +0.1	[mm]	3	3	6	6
I+0.5	[mm]	8.5	8.5	12.5	12.5
$m \pm 0.05$	[mm]	6.6	10.3	15	18.1
n	[mm]	1.5	2.5	6	8
р	[mm]	22.5	34	37	47
q	[mm]	8.5	11.5	12.5	15.5
SW 1	[mm]	8	10	18	24
Moment of inertia of J _e	[kgmm²]	44	230	1284	3247

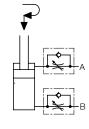
Part no.

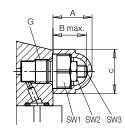
Clamping arm with contact bolt and dowel pin	0354243	0354249	0354254	0354256
Dowel pin	3 m 6x8	3 m 6x8	6 m 6x12	6 m 6x12
	3301854	3301854	3300325	3300325
Metallic wiper	0341 227	0341 228	0341 229	0341 230

Accessory

Throttle valve

Throttle valves are used


- in order to reduce the swing speed of the clamping arm
- in order to improve the synchronism of several swing clamps


This application is only possible for manifold-mounting connection through drilled channels.

Important note

If throttling is too strong, the back pressure can trigger premature switching of pressure switches and sequence valves.

Hydraulic symbol

Swing clamps		1853 1854	1856 1857
Α	[mm]	16	21
B max.	[mm]	13.5	17.5
C	[mm]	18	23.6
G		G 1/8	G 1/4
SW1	[mm]	14	19
Tightening torque	[Nm]	18	35
SW2	[mm]	8	8
SW3	[mm]	2.5	2.5
Weight	[kg]	0.025	0.036
Part no.		2957209	2957210

Accessory Electrical position monitoring

Application

The electrical position monitoring signals the following conditions due to damping of two inductive proximity switches:

- 1. Piston extended, clamping arm in off-position.
- 2. Piston in clamping area, clamping arm in clamping position.

For each control function, an electrical line has to be provided at the clamping fixture.

Description

The electrical position monitoring can be easily retrofitted at all swing clamps with switch rod (185XQ0XX).

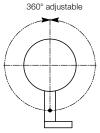
Included in our delivery are:

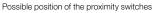
- 1 Signal sleeve with screw
- 1 Adapter with 4 countersunk screws
- 1 Control housing with 3 set screws
- 2 Inductive proximity switches with right angle plug (if ordered)

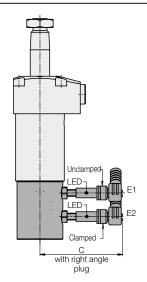
The signal sleeve is screwed onto the switch rod. The adapter is mounted with 4 countersunk screws on the bottom cover.

The control housing can be put onto the adapter in any angular position and locked with 3 set screws.

For information on adjustment of proximity switches, see operating manual.


Important notes


Inductive position monitorings are not suitable for the use in coolant and swarf areas. According to the corresponding application conditions, safety measures have to be planned and checked later on.


Technical data

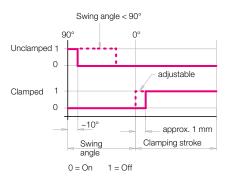
Operating voltage	10-30 V DC
Max. residual ripple	10 %
Max. constant current	100 mA
Switching function	interlock
Output	PNP
Material of housing	stainless steel
Thread	M 5 x 0.5
Code class	IP 67
Ambient temperature	-25to+70 °C
LED function display	Yes
Protected against short circuits	Yes
Type of connection	Connector
Length of cable	5 m

Swing clamps		1853Q0XX	1854Q0XX	1856Q0XX	1857Q0XX
Α	[mm]	8.5	8.5	8.5	8.5
В	[mm]	25.5	30.5	37.5	39.5
C approx.	[mm]	59.5	61	62	62
ØD	[mm]	33	42	45	45
h1	[mm]	90.5	110	132	141
h2	[mm]	42	49	55	57

Part no. swing angle 0° or 90°

with switch and plug	0353920	0353926	0353930	0353943
without switch and plug	0353923	0353927	0353931	0353944

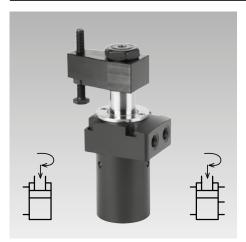
Part no. 15° to 75° = XX^*)

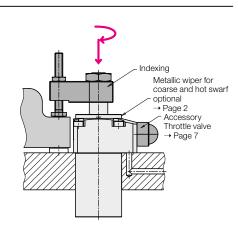

with switch and plug	03539200XX	03539260XX	03539300XX	03539430XX
without switch and plug	03539230XX	03539270XX	03539310XX	03539440XX

Part no. spare parts

Inductive proximity switch	3829198	3829198	3829198	3829198
Right angle plug 5 m	3829099	3829099	3829099	3829099

^{*)} in gradation of 5° (see page 2, "swing angle α < 90°")


Function chart


Swing clamp with reinforced swing mechanism

Position monitoring optional: pneumatically integrated / electrically attachable Top flange type, double acting, max. operating pressure 120 bar

Advantages

- 4 sizes available
- Compact design partially recessible
- High clamping force already at 120 bar
- Extremely short clamping and unclamping times
- Accessory throttle valve, screw-in
- Indexing of clamping arm
- Standard FKM wiper
- Metallic wiper optional
- Pneumatic position monitoring integrated for type 186XP, standard
- Electrical position monitoring for type 186XQ, available as accessory
- Mounting position: any

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

This series obtains very high clamping forces even at 120 bar and can directly be connected to the low-pressure hydraulics of the machine tools

With the reinforced swing mechanism and the optional position monitorings these swing clamps are particularly suitable for:

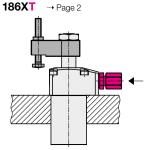
- Automatic manufacturing systems with very short cycle times
- Clamping fixtures with workpiece loading by handling systems
- Transfer lines and assembly lines
- Test systems for motors, gears and axes
- Assembly lines
- Special machine tools

Description

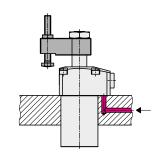
The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston.

The reinforced swing mechanism ensures that the angle position of the clamping arm remains the same even if a slight collision with the work-piece during loading and unloading or during clamping occurs.

The angle position of the clamping arm is fixed with a dowel pin.

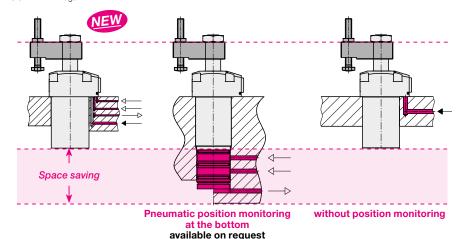

The FKM wiper at the piston rod can be protected against coarse and hot swarf by an optionally available metallic wiper (see page 2).

The version with extended switch rod is provided for mounting electrical position monitoring (accessory).

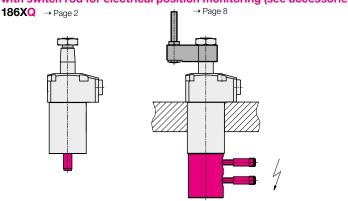

Important notes see page 2.

Installation and connecting possibilities Pipe thread

without position monitoring

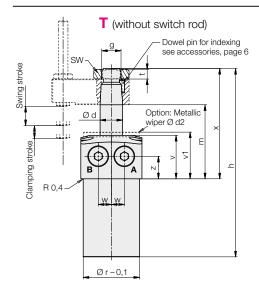


Drilled channels



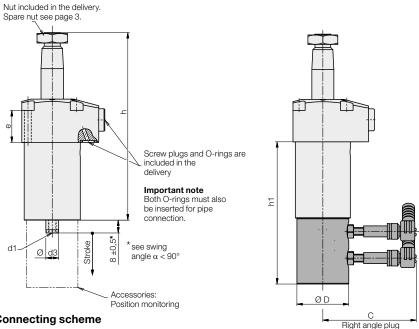
with integrated pneumatic position control

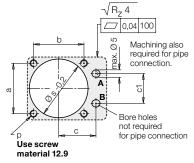
186XP → Page 4



with switch rod for electrical position monitoring (see accessories)

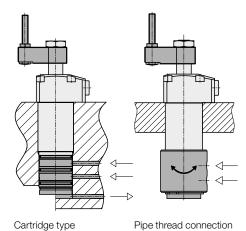
Versions T and Q


Dimensions


A = Clamping **B** = Unclamping

Clamping position ±1° Swing direction Swing direction wing angle 90° Off-position Indexing mark clamping position max.

Q (with switch rod)


Connecting scheme

Pneumatic position monitorings

Electrical position monitoring (→ page 8)

available on request

Swing angle

1. Swing angle 90° and 0° (standard)

Part no.

186X X090 RXX 90° cw 90° ccw 186X X090 LXX 0° 186X X000 0XX

2. Swing angle α < 90°

α = 15° to 75° in gradation of 5°

By insertion of a distance plate the return stroke of the piston is reduced and thus the swing angle is reduced.

Clamping stroke and clamping position remain the same. The swing stroke and the dimensions h, m and x are reduced by y:

 $y = (90^{\circ} - \alpha^{\circ}) * k$ (k see chart page 3)

Dimension 8 ± 0.5 is lengthened by the value y.

Example:

1866T090L27 Swing clamp Desired swing angle 45° ccw Part no. 1866 T045 L27

Shortening:

 $y = (90^{\circ} - 45^{\circ}) * 0.125 \text{ mm/}^{\circ} = 5.625 \text{ mm}$

3. Swing angle > 90°

Available on request!

Important notes

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm, there is the danger of crushing.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices. The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening or untightening the fixing nut.

During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

Remedy: Mount position adaptor.

Wiper system

The standard FKM wiper has a high chemical resistance against most cooling and cutting fluids. The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf.

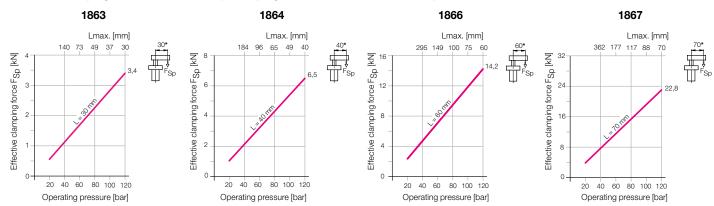
It consists of a radially floating wiping disk and a retaining disk.

The metallic wiper can be delivered already mounted ("M") or as an accessory for retrofitting (part no. see page 7).

The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection ef-

If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk.

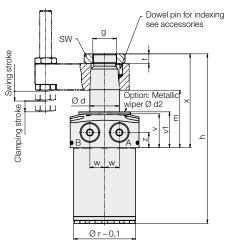
Versions T and Q

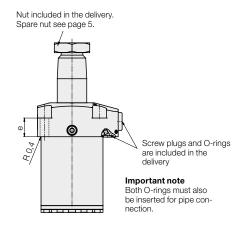

Technical data• Dimensions

Swing clamps			1863	1864	1866	1867
Max. pulling forc	e (120 bar)	[kN]	4.04	7.65	17	27.6
Effective clamping		[kN]	Se	ee diagram or calculatio	on of the clamping forc	e on page 6
Clamping stroke		[mm]	8	8	10	10
Swing stroke		[mm]	8	13	17	19
Total stroke		[mm]	16	21	27	29
Min. operating p	ressure	[bar]	20	20	20	20
Max. flow rate	Clamping	[cm ³ /s]	13.5	33.5	96	167
	Unclamping	[cm ³ /s]	20	53.5	145	255
Piston area	Clamping	[cm ²]	3.36	6.37	14.16	23
	Unclamping	[cm²]	4.9	10.17	21.23	33.18
Oil volume / strol		[cm ³]	5.4	13.4	38.3	66.7
Oil volume / retu	rn stroke	[cm ³]	7.9	21.4	57.4	102
Piston Ø		[mm]	25	36	52	65
a		[mm]	30.5	40	56	68
b		[mm]	30.5	40	56	68
C		[mm]	22.5	28	36	42
c1		[mm]	18	24	36	45
Ød		[mm]	14	22	30	36
Ø d1		[mm]	M5 x 14.5 deep	M6 x 11.5 deep	M6 x 16.0 deep	M6 x 16.0 deep
Ø d2		[mm]	34.5	44.5	52.5	58.5
Ø d3 f7		[mm]	8	10	12	12
e		[mm]	20	19.5	19	23.5
SW		[mm]	SW 19	SW 27	SW 36	SW 46
		[mm]	M12	M18 x 1.5	M24 x 1.5	M30 x 1.5
g G		[i i i i i j	G 1/8	G 1/8	G 1/4	G 1/4
h		[mm]	117	149	178.5	203.5
h1		[mm]	90.5	110	132	141
k		[mm/°]	0.056	0.095	0.125	0.125
L		[mm]	38	50	70	86
L1			48	60	82	96
m		[mm] [mm]	46	54	64.5	72.5
		[mm]	19	25	35	43
n			M4 (10.9)	M5 (10.9)	M8 (10.9)	M10 (10.9)
p Ø n1		[mm] [mm]	4.3	5.5	9	11
Ø p1 p2				5.5	7	9
		[mm]	4 3	3	6	7
p3 Ør-0.1		[mm]	35	47	63	78
Øs-0.1 Øs-0.2		[mm]	36	48	64	79
		[mm]		40	10	
t		[mm]	6			12
V		[mm]	27	29.5	34.5	39
v1		[mm]	29	31.5	36.5	41
W		[mm]	8.1	11	15	19
X		[mm]	68.5	88	101.5	119.5
Z		[mm]	14	13.5	15.5	15.5
Weight, approx.	01 1 1 200	[kg]	0.7	1.5	3.0	5.0
Part no.	Clockwise rotation 90° Swing direction 90° ccw		1863 X090 R16M 1863 X090 L16M	1864 X090 R21M 1864 X090 L21M	1866 X090 R27M 1866 X090 L27M	1867 X090 R29M 1867 X090 L29M
Spara O rina	0 degree	[mm]	1863 X000016M	1864 X000021M	1866 X000027M	1867 X000029M
Spare O-ring		[mm]	7 x 1.5	7 x 1.5	8 x 1.5	8 x 1.5
Part no. Spare nut DIN 93	36		3000342 M12	3000342 M18 x 1.5	3000343 M24 x 1.5	3000343 M30 x 1.5
Tightening torque		[MM]	12	30	1VIZ4 X 1.5	110
Part no.	Ե	[Nm]	3302115	3301 663	3302104	3302139

Code letter X see page 2

Metallic wiper $\mathbf{M} = \text{option}$ (see page 2)

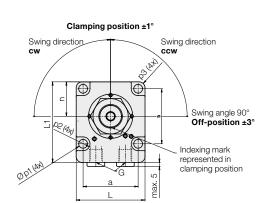

Effective clamping force with accessory clamping arm as a function of the oil pressure

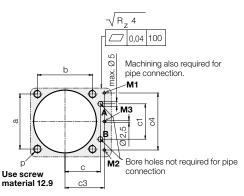


^{*} Clamping force for other lengths see page 6

Dimensions • Pneumatic position monitoring

P (with integrated pneumatic position monitoring)

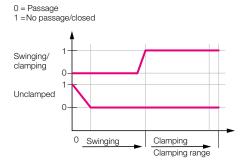

A = Clamping


B = Unclamping

M1 = Clamped (pneumatic)

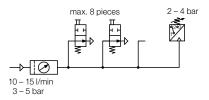
M2 = Unclamped (pneumatic)

M3 = Outlet air (pneumatic)


Pneumatic position monitoring Application

The pneumatic position monitoring signals the following conditions by closing two bore holes:

- Piston extended and clamping arm in off-position.
- 2. Piston in clamping area and clamping arm in clamping position.


For each control function, a pneumatic line has to be provided at the clamping fixture.

Pneumatic diagram

Monitoring by pneumatic pressure switch

Connecting scheme

For the evaluation of the pneumatic pressure increase, standard pneumatic pressure switches can be used. With one pressure switch up to 8 position monitorings can be monitored. Note that reliable functioning of pneumatic monitoring is only guaranteed if the throttled air pres-

sure and air flow rate are throttled.

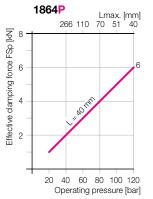
Technical data

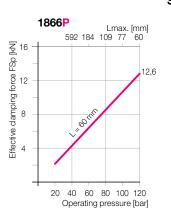
Port	Drilled channels
Nominal diameter	2 mm
Max. air pressure	10 bar
Range of operating pressure	3-5 bar
Differential pressure*) at 3 – 5 bar system pressure	min. 1.5 bar
Air flow rate	10- 15 l/min

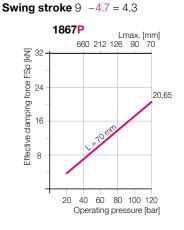
*) Minimum pressure difference, if one or several position monitorings are not operated

Version P

Technical data• Dimensions


Max. pulling force (70 bar) Effective clamping force Clamping stroke Swing stroke Total stroke Min. operating pressure Min. clamping and unclamp Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	ping times Clamping Unclamping Clamping Unclamping	[kN] [kN] [mm] [mm] [bar] [s] [cm³/s] [cm²] [cm²] [cm²] [cm³]	4.04 see diagra 8 8 16 20 0.5 10.8 15.8 3.36 4.9 5.4	7.65 ram or calculation of the 8 9 17 20 0.5 21.6 34.6 6.37 10.17	17 e clamping force on page 9 10 11 21 20 0.5 60 89.2 14.16 21.23	27.6 10 15 25 20 0.5 115 166 23 33.18
Clamping stroke Swing stroke Total stroke Min. operating pressure Min. clamping and unclamp Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping Unclamping Clamping	[mm] [mm] [mm] [bar] [s] [cm³/s] [cm²/s] [cm²] [cm²] [cm³] [cm³] [mm]	8 8 16 20 0.5 10.8 15.8 3.36 4.9 5.4	8 9 17 20 0.5 21.6 34.6 6.37 10.17	10 11 21 20 0.5 60 89.2 14.16 21.23	10 15 25 20 0.5 115 166 23
Swing stroke Total stroke Min. operating pressure Min. clamping and unclam Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping Unclamping Clamping	[mm] [mm] [bar] [s] [cm³/s] [cm³/s] [cm²] [cm²] [cm³] [cm³]	8 16 20 0.5 10.8 15.8 3.36 4.9 5.4	9 17 20 0.5 21.6 34.6 6.37 10.17	11 21 20 0.5 60 89.2 14.16 21.23	15 25 20 0.5 115 166 23
Total stroke Min. operating pressure Min. clamping and unclamp Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping Unclamping Clamping	[mm] [bar] [s] [cm³/s] [cm²] [cm²] [cm³] [cm³] [cm³]	16 20 0.5 10.8 15.8 3.36 4.9 5.4	17 20 0.5 21.6 34.6 6.37 10.17	21 20 0.5 60 89.2 14.16 21.23	25 20 0.5 115 166 23
Min. operating pressure Min. clamping and unclamp Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping Unclamping Clamping	[bar] [s] [cm³/s] [cm³/s] [cm²] [cm²] [cm³] [cm³] [mm]	20 0.5 10.8 15.8 3.36 4.9 5.4	20 0.5 21.6 34.6 6.37 10.17	20 0.5 60 89.2 14.16 21.23	20 0.5 115 166 23
Min. clamping and unclamp Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping Unclamping Clamping	[s] [cm³/s] [cm³/s] [cm²] [cm²] [cm³] [cm³]	0.5 10.8 15.8 3.36 4.9 5.4	0.5 21.6 34.6 6.37 10.17	0.5 60 89.2 14.16 21.23	0.5 115 166 23
Min. clamping and unclamp Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping Unclamping Clamping	[cm ³ /s] [cm ³ /s] [cm ²] [cm ²] [cm ³] [cm ³]	10.8 15.8 3.36 4.9 5.4	21.6 34.6 6.37 10.17	60 89.2 14.16 21.23	115 166 23
Max. flow rate Piston area Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping Unclamping Clamping	[cm ³ /s] [cm ³ /s] [cm ²] [cm ²] [cm ³] [cm ³]	10.8 15.8 3.36 4.9 5.4	21.6 34.6 6.37 10.17	60 89.2 14.16 21.23	115 166 23
Oil volume / stroke Oil volume / return stroke Piston Ø a b	Unclamping Clamping	[cm³/s] [cm²] [cm²] [cm³] [cm³] [mm]	15.8 3.36 4.9 5.4	6.37 10.17	89.2 14.16 21.23	166 23
Oil volume / stroke Oil volume / return stroke Piston Ø a b	Clamping	[cm ²] [cm ²] [cm ³] [cm ³] [mm]	3.36 4.9 5.4	6.37 10.17	14.16 21.23	23
Oil volume / stroke Oil volume / return stroke Piston Ø a b	Unclamping	[cm ²] [cm ³] [cm ³] [mm]	4.9 5.4	10.17	21.23	
Oil volume / return stroke Piston Ø a b	Chloramping	[cm³] [cm³] [mm]	5.4			13:3 10
Oil volume / return stroke Piston Ø a b		[cm³] [mm]			29.8	57.5
Piston Ø a b		[mm]	1.0	17.3	44.6	83
a b			25	36	52	65
b					56	
		[mm]	30.5	40		68
		[mm]	30.5	40	56	68
C		[mm]	22.5	28	36	42
c1		[mm]	18	24	36	45
c3		[mm]	21	28	40	44.5
c4		[mm]	31.8	41	58	67
Ød		[mm]	14	22	30	36
Ø d2		[mm]	34.5	44.5	52.5	58.5
e		[mm]	20	19.5	19	23.5
SW		[mm]	SW 19	SW 27	SW 36	SW 46
		[mm]	M 12	M18x1.5	M24x1.5	M30x1.5
g G		[i i ii i i	G 1/8	G 1/8	G 1/4	G 1/4
		[mm]				
h		[mm]	116.5	145	172.5	199.5
L		[mm]	38	50	70	86
L1		[mm]	48	60	82	96
m		[mm]	45.5	50	59	68.5
n		[mm]	19	25	35	43
р		[mm]	M4 (10.9)	M5 (10.9)	M8 (10.9)	M8 (10.9)
Ø p1		[mm]	4.3	5.5	9	11
Ø p2		[mm]	4	5	7	9
βĠ		[mm]	3	3	6	7
Ør –0.1		[mm]	35	47	63	78
Øs-0.2		[mm]	36	48	64	79
t		[mm]	6	9	10	12
V		[mm]	27	29.5	34.5	39
v v1		[mm]	29	31.5	36.5	41
			8	11	15	19
W		[mm]				
X		[mm]	68	84	95.5	115.5
Z		[mm]	14	13.5	15.5	15.5
Weight, approx.		[kg]	0.7	1.5	3.2	5.1
	direction cw		1863PXXR16	1864PXXR17	1866PXXR21	1867PXXR25
Swing	direction ccw		1863PXXL16	1864PXXL17	1866PXXL21	1867PXXL25
0°			1863P00016	1864P00017	1866P00021	1867P00025
Spare O-ring	2 x hydraulics	[mm]	5 x 1.5	7×1.5	8x1.5	8x1.5
, ,	2 A Hyurdulius	[mm]				
Part no.	0	f 1	3000340	3000342	3000343	3000343
Spare O-ring	3 x pneumatics	[mm]	3 x 1	3 x 1	2.9 x 1.78	2.9x1.78
Part no.			3001758	3001758	3000019	3000019
Spare nut DIN 936			M12	M 18 x 1.5	M24×1.5	M30x1.5
Tightening torque		[Nm]	12	30	62	110
Part no.			3302115	3301663	3302104	3302139


Swing angle	Part no.	Length of	correction	value for h	, m, x, tota	al stroke and swing stroke
90°	186XP90XXX	1863P	1864P	1866P	1867P	Example: 1864P
60°	186XP60XXX	0	0	0	0	h 145
45°	186XP45XXX	-3.5	-3.7	-4.9	-6.3	m 50
0°	186XP000XX	-4.5	-4.7	-6.2	-8.2	x 84
With metallic winer 1)	186YPYYYYYM	Λ	Λ	Ω	Λ	Total stroke 17


1) Wiper system, see page 2

1863P

Effective clamping force FSp [kN]

Example: 1864P45R17

h 145 -4.7 = 140.3 m 50 -4.7 = 45.3 x 84 -4.7 = 79.3 Total stroke 17 -4.7 = 12.3

20 40 60 80 100 120

Lmax. [mm] 290 91 54 39 30

Operating pressure [bar] * Clamping force for other lengths see page 6

Calculation of the flow rate • Calculation of the clamping force

Admissible flow rate

With the accessory clamping arm and the admissible flow rate as per the chart, the shortest clamping time is approx. 0.4 seconds.

Longer special clamping arms have a higher torque of inertia. To avoid an overload of the swing mechanism, the flow rate has to be reduced:

$$Q_L = Q_e * \sqrt{\frac{J_e}{J_L}} \text{ cm}^3/\text{s}$$

Q = Flow rate as per chart

 $Q_L^e = Flow rate with special clamping arm$

= Torque of inertia accessory clamping arm

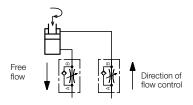
 $J_i^{"}$ = Torque of inertia special clamping arm

If the torques of inertia are not known, the admissible flow rate can be determined according to the following example:

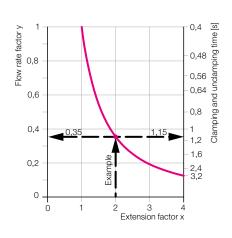
Conditions: The special clamping arm is longer, has however the form (cross section) of the accessory clamping arm, as shown on page 6.

Example: Swing clamp 1863T090R16

 $I = 60 \, \text{mm}$


e = 30 mm as per above chart

 $Q_0 = 13.5 \text{ cm}^3/\text{s}$


1. Extension factor
$$x = \frac{L}{e} = \frac{60 \text{ mm}}{30 \text{ mm}} = 2$$

- 2. Flow rate factor as per diagram \rightarrow y = 0.35
- 3. Max. flow rate $Q_1 = y * Q_2 = 0.35 * 13.5 \text{ cm}^3/\text{s} = 4.7 \text{ cm}^3/\text{s}$
- 4. Min. clamping time as per diagram → approx. 1.15 s

Throttling of the flow rate

Adm. flow rate and clamping time as a function of the clamping arm extension

Clamping force calculation

The clamping force diagram shows the effective clamping force with accessory clamping arm (L = e).

Versions T and Q: see page 3

Version P: see page 5

With longer clamping arms (L > e) the degree of efficiency is reduced. This is considered in the following calculation.

The constants (A-E) for the 4 sizes are shown in the following charts.

Versions T and Q

Constant	1863	1864	1866	1867
Α	29.68	15.68	7.06	4.35
В	0.177	0.069	0.023	0.013
С	102.9	260.5	853.8	1596
D	3053	4087	6026	6939
E	18.2	17.86	19.55	20.86

Version P

Constant	1863	1864	1866	1867
Α	29.68	15.68	7.06	4.35
В	0.343	0.108	0.041	0.021
С	90	240	756	1442
D	2671	3763	5335	6270
E	30.8	25.9	31	30.5

Effective clamping force

$$F_{Sp} = \frac{p}{A + (B * L)} \le F_{adm.}$$
 [kN]

Admissible clamping force*)

$$F_{adm} = \frac{C}{I}$$
 [kN]

Admissible operating pressure
$$p_{adm} = \frac{D}{L} + E \le 120 \hspace{1cm} [bar]$$

L = special length [mm] p = pressure [bar]

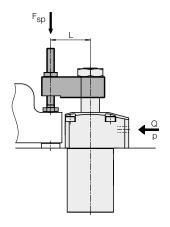
*) With a desired clamping arm length L the clamping force must not exceed the admissible value.

Example: Swing clamp 1863T090R16 Special clamping arm L = 60 mm

1. Admissible clamping force*)

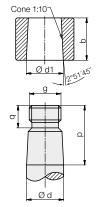
$$F_{adm} = \frac{C}{L} = \frac{102.9}{60} = 1.71 \text{ kN}$$

2. Admissible operating pressure
$$p_{\text{adm}} = \frac{D}{L} + E = \frac{3053}{60} + 18.2 = 69 \text{ bar} < 120$$

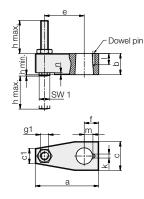

3. Effective clamping force
$$F_{Sp} = \frac{p}{A + (B * L)} = \frac{69}{29.68 + (0.177 * 60)} = 1.71 \text{ kN}$$

Example: Swing clamp 1863 P090 R16 Special clamping arm L = 60 mm

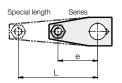
1. Admissible clamping force*)
$$F_{adm} = \frac{C}{L} = \frac{90}{60} = 1.5 \text{ kN}$$


2. Admissible operating pressure
$$p_{adm} = \frac{D}{L} + E = \frac{2671}{60} + 30.8 = 75.3 \text{ bar}$$

3. Effective clamping force
$$F_{Sp} = \frac{p}{A + (B * L)} = \frac{75.3}{29.68 + (0.343 * 60)} = 1.5 \text{ kN}$$



Accessory Clamping arm • Throttle valve


Dimensions for special clamping arms

Clamping arm with contact bolt

Special clamping arm

Flow rate and clamping force calculation, see page 6

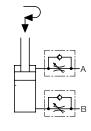
Swing clamps		1863	1864	1866	1867
a	[mm]	48	65	96	114
b	[mm]	16	25	27	35
С	[mm]	22	34	52	60
c1	[mm]	12	19	31	36
Ød	[mm]	14	22	30	36
Ø d1 -0.05	[mm]	14	22	30	36
е	[mm]	30	40	60	70
f	[mm]	11	17	25	30
g	[mm]	M12	M18 x 1.5	M24 x 1.5	M30x1.5
g1	[mm]	M6	M8	M12	M16
h min.	[mm]	1	1	1	1
h max.	[mm]	40	46	54	63
Ø k +0.1	[mm]	3	3	6	6
1+0.5	[mm]	8.5	8.5	12.5	12.5
$m \pm 0.05$	[mm]	6.6	10.3	15	18.1
n	[mm]	1.5	2.5	6	8
р	[mm]	22.5	34	37	47
q	[mm]	8.5	11.5	12.5	15.5
SW 1	[mm]	8	10	18	24
Moment of inertia of J _e	[kgmm²]	44	230	1284	3247

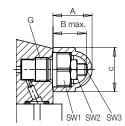
Part no.

Clamping arm with contact bolt and dowel pin	0354243	0354249	0354254	0354256
Dowel pin	3 m 6x8	3 m 6x8	6 m 6x 12	6 m 6x 12
	3301854	3301854	3300325	3300325
Metallic wiper	0341227	0341 228	0341 229	0341230

Accessory Throttle valve

Throttle valves are used


- in order to reduce the swing speed of the
- clamping arm
 in order to improve the synchronism of several swing clamps


This application is only possible for manifold-mounting connection through drilled channels.

Important note

If throttling is too strong, the back pressure can trigger premature switching of pressure switches and sequence valves.

Hydraulic symbol

Swing clamps		1863 1864	1866 1867
Α	[mm]	16	21
B max.	[mm]	13.5	17.5
C	[mm]	18	23.6
G		G 1/8	G 1/4
SW1	[mm]	14	19
Tightening torque	[Nm]	18	35
SW2	[mm]	8	8
SW3	[mm]	2.5	2.5
Weight	[kg]	0.025	0.036
Part no.		2957209	2957210

Accessory Electrical position monitoring

Application

The electrical position monitoring signals the following conditions due to damping of two inductive proximity switches:

- 1. Piston extended, clamping arm in off-position.
- 2. Piston in clamping area, clamping arm in clamping position.

For each control function, an electrical line has to be provided at the clamping fixture.

Description

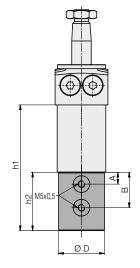
The electrical position monitoring can be easily retrofitted at all swing clamps with switch rod (186XQ0XX).

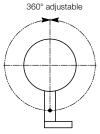
Included in our delivery are:

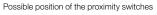
- 1 Signal sleeve with screw
- 1 Adapter with 4 countersunk screws
- 1 Control housing with 3 set screws
- 2 Inductive proximity switches with right angle plug (if ordered)

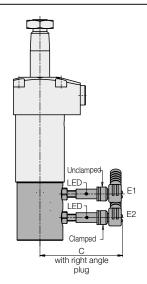
The signal sleeve is screwed onto the switch rod. The adapter is mounted with 4 countersunk screws on the bottom cover.

The control housing can be put onto the adapter in any angular position and locked with 3 set screws.


For information on adjustment of proximity switches, see operating manual.


Important notes


Inductive position monitorings are not suitable for the use in coolant and swarf areas. According to the corresponding application conditions, safety measures have to be planned and checked later on.


Technical data

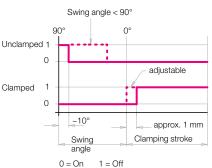
Operating voltage	10-30 V DC
Max. residual ripple	10 %
Max. constant current	100 mA
Switching function	interlock
Output	PNP
Material of housing	stainless steel
Thread	M 5 x 0.5
Code class	IP 67
Ambient temperature	-25 to +70 °C
LED function display	Yes
Protected against short circuits	Yes
Type of connection	Connector
Length of cable	5 m

Swing clamps		1863Q0XX	1864Q0XX	1866Q0XX	1867Q0XX
Α	[mm]	8.5	8.5	8.5	8.5
В	[mm]	25.5	30.5	37.5	39.5
C approx.	[mm]	59.5	61	62	62
ØD	[mm]	33	42	45	45
h1	[mm]	90.5	110	132	141
h2	[mm]	42	49	55	57

Part no. swing angle 0° or 90°

with switch and plug	0353920	0353926	0353930	0353943
without switch and plug	0353923	0353927	0353931	0353944

Part no. 15° to 75° = XX^*)


with switch and plug	03539200XX	03539260XX	03539300XX	03539430XX
without switch and plug	03539230XX	03539270XX	03539310XX	03539440XX

Part no. spare parts

Inductive proximity switch	3829198	3829198	3829198	3829198
Right angle plug 5 m	3829099	3829099	3829099	3829099

^{*)} in gradation of 5° (see page 2, "swing angle α < 90°")

Function chart

Swing Clamps with Sturdy Swing Mechanism

Cartridge type, position monitoring optional, double acting, max. operating pressure 350 bar

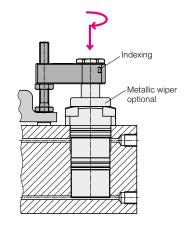
Advantages

- 4 sizes available
- Short version without bottom cover
- Minimum flange dimensions
- High clamping force at low pressures
- Sturdy swing mechanism
- Insensitive against high flow rates
- Indexing of the clamping arm in a specified position is possible
- Special swing angle easily realizable

The units are available with clockwise and

counterclockwise swing motion or without

The swing angle can be limited by the inser-


tion of distance plates (see page 2).

Standard FKM wiper

Swing direction

swing motion (0°).

- Metallic wiper optional
- Mounting position: any

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Due to the sturdy swing mechanism these swing clamps are particularly suited for:

- Automatic manufacturing systems
- Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Test systems for motors, gears and axes
- Assembly lines
- Special machine tools

Wiper system

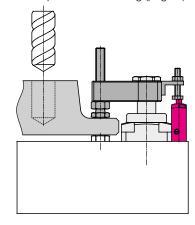
The standard FKM wiper has a high chemical resistance against most cooling and cutting fluids.

The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf.

It consists of a radially floating wiping disk and a retaining disk.

The metallic wiper can be delivered already mounted ("M") or as an accessory for retrofitting (see page 4).

Attention!


The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection effect.

If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk.

Position monitoring as accessory

Clamping arm complete with angle bracket (page 4).

Pneumatic position monitoring (page 5).

Description

The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston.

The favourable area ratio (piston/piston rod) allows high clamping forces already at relatively low oil pressures.

For high flow rates the swing speed is limited by an orifice in the clamping port. Thus, uniform clamping of several swing clamps is also possible when oil supply is effected through a common bore.

Due to the sturdy swing mechanism the angle position of the clamping arm remains the same after a slight collision with the workpiece during loading or unloading. Also a collision during the clamping process is not critical.

Important notes!

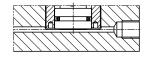
Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil.

They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

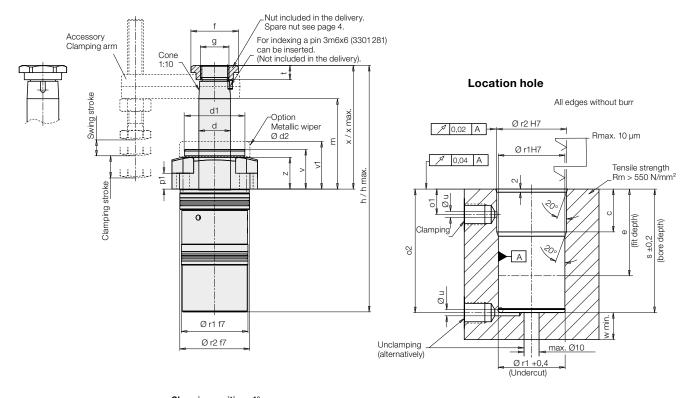
In the effective area of piston rod and clamping arm there is the danger of crushing.

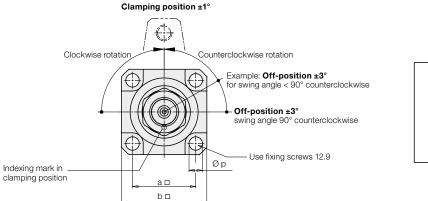
The manufacturer of the fixture or the machine is obliged to provide effective protection devices

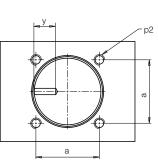
The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening or untightening the fixing nut.


During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

Remedy: Mount position adaptor.


Operating conditions, tolerances and other data see data sheet A 0.100.


Version without bottom cover


Focusing on a short length, the bottom cover had been omitted. The piston contacts the bottom of the cartridge-type hole.

Dimensions Accessories

Swing angle

1. Swing angle 90° (standard)

Part no.
90° cw 184XF090 RXX
90° ccw 184XF090 LXX
0° 184XF000 0XX

2. Swing angle α < 90°

α = 15° to 75° in gradation of 5°

By insertion of a distance plate the return stroke of the piston is reduced and thus the swing angle is reduced.

Clamping stroke and clamping position remain the same. The swing stroke and the dimensions h, m and x are reduced by y:

 $y = (90^{\circ} - \alpha^{\circ}) * k$ (k see chart page 3)

Example:

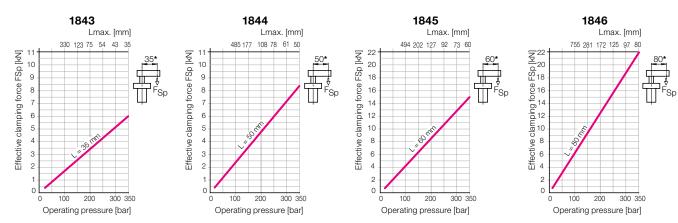
Swing clamp 1845F090L30
Desired swing angle 45° ccw
Part no. 1845F045L30

Shortening:

 $y = (90^{\circ} - \alpha^{\circ}) * 0.12 \text{ mm/}^{\circ} = 5.4 \text{ mm}$

3. Swing angle > 90°

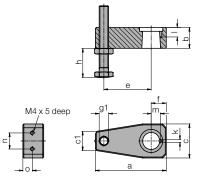
Available on request!

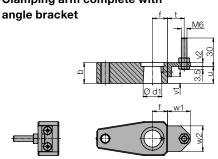

Technical data

Max. pulling force	[kN]	7.5	10.5	18.4	27.5
Effective clamping force	[kN]		see diag		
Clamping stroke	[mm]	12	12	15	15
Swing stroke	[mm]	11	12	15	21
Total stroke +0.4/-0.3	[mm]	23	24	30	36
Min. operating pressure	[bar]	30	30	30	30
Max. flow rate					
Clamping	[cm ³ /s]	10	14	32	57
Unclamping	[cm3/s]	20	28	60	110
Effective piston area					
Clamping	[cm ²]	2.14	3.01	5.27	7.86
Unclamping	[cm ²]	4.15	6.15	10.17	15.90
Oil volume/stroke	[cm ³]	4.9	7.2	15.8	28.3
Oil volume/return stroke	[cm ³]	9.6	14.8	30.5	57.2
Piston Ø	[mm]	23	28	36	45
а□	[mm]	33	40	50	57
b□	[mm]	43	54	67	77
С	[mm]	23	27	25	32
Ød	[mm]	16	20	25	32
Ø d1	[mm]	28	38	45	48
Ø d2	[mm]	33	42	54	54.5
e (fit depth)	[mm]	45	50	53	53
Øf	[mm]	27	30	36	40
g		M14 x 1.5	M18 x 1.5	M20x1.5	M28 x 1.5
h +0.4/-0.5 / h max. ¹⁾	[mm]	150.5 / 151.8	161.5 / 163.3	188.5 / 190.3	216.9 / 217.4
k	[mm/°]	0.091	0.093	0.12	0.152
m +0.4/-0.7 ²⁾	[mm]	56.4	57.9	68.9	78.3
o1 min./max.	[mm]	16/17	16/23	20/20	21/26
o2 min./max.	[mm]	50/73	53/78	57/89	58/101
Øp	[mm]	6.6	8.5	10.5	13.0
p1	[mm]	13	10	14	16
p2	, ,	M6	M8	M10	M12
Ø r1	[mm]	35	42	52	63
Ø r2	[mm]	36	44	55	65
s ±0.2	[mm]	73.3	78.3	89.3	101.3
t	[mm]	7.5	9	10	10
Ø u max.	[mm]	10	6	8	10
V	[mm]	25	25	29	34
v1 metallic wiper	[mm]	30	30	34	39
w min. [thickness of the bottom]	[mm]	14	16	16	20
x +0.3/-0.2 / x max. ¹⁾	[mm]	78 / 79.2	84 / 85.8	100 / 101.6	116.5 /116.8
y min.	[mm]	8	9	10	12
Z	[mm]	20	20	24.4	28.4
Weight, approx.	[kg]	0.9	1.4	2.3	3.65
Part no.	ເ, ,ອາ	0.0	11.1	2.0	3.00
Clockwise rotation 90°		1843 F090 R23M	1844 F090 R24M	1845 F090 R30M	1846F090R36N
Counterclockwise rotation 90°		1843F090L23M	1844F090L24M	1845F090L30M	1846F090L36N
0 degree		1843F000023M	1844F000024M	1845 F000 030 M	1846F000036M

 $^{^{1)}\,}h\,/\,x=$ upper edge piston $\,$ h max. $/\,x$ max. = upper edge nut $^{2)}\,m=$ lower edge clamping arm

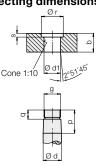
M = Option metallic wiper (see also page 1)


Effective clamping force with accessory clamping arm as a function of the oil pressure

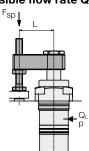

^{*} Clamping force for other lengths see page 4.

Accessories - Clamping arms • Metallic wipers Calculation of the flow rate • Calculation of the clamping force

Clamping arm, max. 350 bar



Clamping arm complete with



Special clamping arm

1. Connecting dimensions

2. Admissible flow rate Q*

In the chart on page 3, the admissible flow rates for clamping and unclamping with the clamping arms (accessories) are specified. Longer special clamping arms have a higher torque of inertia. To avoid an overload of the swing mechanism, the flow rate has to be re-

2.1 Moments of inertia are known

$$Q_L = Q_e * \sqrt{\frac{J_e}{J_L}} cm^3/s$$

Q₁ = Flow rate with special clamping arm

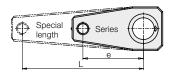
Q = Flow rate as per chart (page 3)

J_e = Moment of inertia of the clamping arm (accessory) with contact bolt (chart)

J₁ = Moment of inertia special clamping arm

* Only for vertical mounting position!

Swing clamps		1843	1844	1845	1846
а	[mm]	58	75	93	120
b	[mm]	17	22	26	32
C	[mm]	28	36	45	60
c1	[mm]	14	20	23	28
Ød f7	[mm]	16	20	25	32
Ød1 +0.1/+0.05	[mm]	15.8	19.8	24.8	31.8
е	[mm]	35	50	60	80
f	[mm]	16	16	22	26
g	[mm]	M14x1.5	M18x1.5	M20x1.5	M28x1.5
g1	[mm]	M8	M10	M12	M16
h min/max	[mm]	5/45	6/64	7/70	9/85
Ø k +0.1	[mm]	3	3	3	3
I +0.5	[mm]	9	10	10	10.5
m ±0.05	[mm]	7.8	9.8	12	15
n	[mm]	11	17	20	20
0	[mm]	6	10	12	20
p	[mm]	22.5	27	32	39
q	[mm]	9	10	11	12.7
Ør	[mm]	20	24.5	31	34.5
S	[mm]	2.5	4	4	4.5
t	[mm]	11	17.5	19	19
u	[mm]	17	18	21	19
v1	[mm]	6	7	8	6
v2	[mm]	4	4	5	_5
w1	[mm]	18	24	26	26
w2	[mm]	21	27	30	30
Part no. clamping arm					
 with contact bolt 	r	0354152	0354153	0354154	0354 155
Weight, approx.	[kg]	0.19	0.39	0.69	1.43
Moment of inertia of Je	[kgm²]	0.00011	0.00046	0.0011	0.00398
- without thread g1	ft 3	3548660	3548661	3548803	3548804
Weight, approx.	[kg]	0.16	0.34	0.62	1.28
Moment of inertia of J _e	[kgm²]	0.00007	0.00033	0.00084	0.00298
 complete with angle 		0354156	0354157	0354 158	0354159


Special clamping arm

Tightening torque

Angle bracket complete

Metallic wiper

Spare nut

[Nm]

0184003

0341 104

3527092

2.2 Moments of inertia not known

This simplified calculation is only applicable for clamping arms of the above shape.

Example: Swing clamps 1843

L = 70 mm

e = 35 mm as per above chart

Q_a = 10 cm³/s (as per chart page 3)

1. Extension factor

2. Flow rate factor


as per diagram \rightarrow y = 0.35

3. Max. flow rate

 $Q_L = y * Q_e = 0.35 * 10 cm^3/s = 3.5 cm^3/s$

4. Min. clamping time

as per diagram → approx. 1.4 s

Adm. flow rate and clamping time as a function of the clamping arm extension

Clamping force and admissible operating pressure

Effective clamping force (general)
$$F_{Sp} = \frac{p}{A + (B * L)} \le F_{adm.}$$
 [kN]

0184005

0341105

3527099

0184005

0341100

3527015

Admissible clamping force

0184004

0341 107

3527014

$$F_{adm} = \frac{C}{I}$$
 [kN]

Admissible operating pressure
$$p_{\text{adm}} = \frac{D}{L} + E \leq 350 \hspace{1cm} \text{[bar]}$$

L = special length [mm] p = pressure [bar]

A, B, C, D, E = constants as per chart

Constant	1843	1844	1845	1846
Α	46.64	33.15	18.98	12.72
В	0.335	0.17	0.073	0.04
С	210	420	900	1760
D	9795	13926	17078	22386
Е	70.26	71.33	65.44	70.36

Example: Swing clamps 1843

L = 70 mm

1. Admissible clamping force
$$F_{adm} = \frac{C}{L} = \frac{210}{70} = 3 \text{ kN}$$

2. Admissible operating pressure

$$p_{adm} = \frac{D}{L} + E = \frac{9795}{70} + 70.26 = 210 \text{ bar}$$

Accessories Pneumatic position monitoring (adjustable) • Throttling of the flow rate

Application

The pneumatic position monitoring signals the following conditions by closing two bore holes:

> Clamping arm in clamping position and piston in clamping area

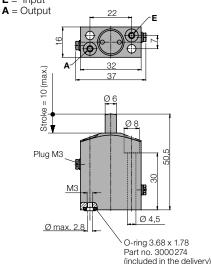
By the pressure increase in the pneumatic line an electro-pneumatic pressure switch or a differential pressure switch can be actuated. These electrical switching devices are integrated in the electric control so that on the clamping fixture no electricity is required.

Description

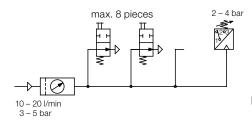
The control bolt is fitted with small clearance into the housing and is maintained by spring force in the off-position.

All components are made of stainless steel.

The pneumatic is preferably supplied and removed through drilled channels; this offers an optimum swarf protection.


Optionally, also pneumatic hoses NW2 can be connected.

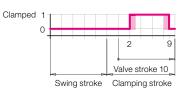
Technical data


(Connection	t	thread M3
Ν	lominal diameter	[mm]	2
N	∕lax. air pressure	[bar]	10
F	Range of operating pressure	[bar]	35
	Differential pressure*) at		
3	B bar system pressure	[bar]	min. 1.5
5	bar system pressure	[bar]	min. 3
	Air flow rate **)	[l/min]	1020
F	Actuating force ***)	[N/bar]	2.8
+	- Spring force	[N]	6.5 13
F	Plunger stroke	[mm]	max. 10

- Pressure drop when controlling the function "Clamped", if one or several position monitorings are not operated.
- **) For measuring the air flow rate appropriate devices are available. Please contact us.
- ***) Port A closed.

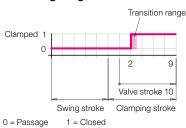
E = Input

Monitoring by pneumatic pressure switch Switching range 2 ÷ 9 mm



For the evaluation of the pressure built-up standard electro-pneumatic pressure switches can be used.

It is possible to monitor up to 8 position monitorings connected in series (see circuit diagram).


Please note!

Functioning of the pneumatic position monitorings is only process-safe, if the air quantity and the system pressure are throttled. The nominal values are indicated below technical data.

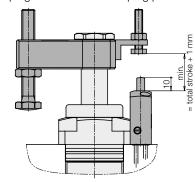
Part no. 0353921

Switching range 2 ÷ 10 mm

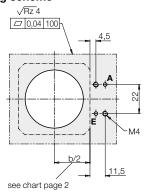
Part no. 0353937

Accessories

Insertion nipple fitting M3


Part no.

3890188


Mounting example

Attention!

Piston extended (unclamped) but clamping arm shown in clamping position.

Connecting scheme

2 connecting bores max. Ø 2.8

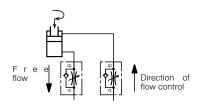
Pneumatic port

Drilled channels

The position monitoring is fixed to the above connecting scheme with inserted O-rings.

With the indicated distance dimensions the position monitoring is directly located at the flange of the swing clamp and has thus the correct distance for the operation of the clamping arm.

Hose connection


Remove the plugs M3 and screw-in the insertion nipple fitting M5 (accessory). The O-rings remain inserted for sealing at the flange-mounting surface.

Important notes

When adjusting the control cam it has to be considered that the control bolt will only be operated after completion of the swing stroke. Within the clamping range the control bolt should have a stroke reserve of approx. 1 mm also for idle strokes (without workpiece) to avoid mechanical damage.

Throttling of the flow rate

A flow rate throttling always has to be effected in the supply line to the swing clamp. This avoids a pressure intensification and thereby pressures exceeding 350 bar.

Swing Clamps with Sturdy Swing Mechanism

Top flange type, with optional position monitoring, double acting, max. operating pressure 350 bar

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Due to the sturdy swing mechanism and the manifold possibilities of position monitoring these swing clamps are particularly suited for

- Automatic manufacturing systems
- Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Test systems for motors, gears and axes
- Assembly lines
- Special machine tools

Description

The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston.

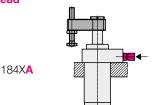
The favourable area ratio (piston/piston rod) allows high clamping forces already at relatively low oil pressures.

Due to the sturdy swing mechanism the angle position of the clamping arm remains the same after a slight collision with the workpiece during loading or unloading. Also a collision during the clamping process is not critical.

When using high flow rates the swing speed is limited by installed throttle points.

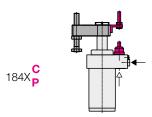
For connection via drilled channels, adjustable throttle valves can be screwed instead of the screw pluas.

The FKM wiper at the piston rod can be protected against coarse and hot swarf by an optionally available metallic wiper (see page 6).

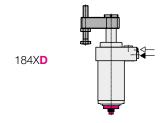

The different possibilities of the position monitoring are presented at the side.

Important notes see page 6.

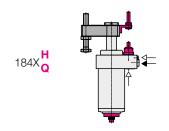
Advantages

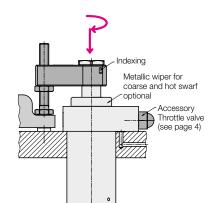

- 5 sizes available
- Compact design partially recessible
- High clamping force at low pressures
- Sturdy swing mechanism
- Insensitive against high flow rates
- Indexing of the clamping arm in a specified position is possible
- Special swing angle easily realisable
- Standard FKM wiper
- Metallic wiper optional
- Throttle valves available as accessory
- Screw counterbores coverable
- position monitoring available in six variants
- Hydraulic and pneumatic ports integrated in the flange
- Mounting position: any

Installation and connecting possibilities Pipe thread



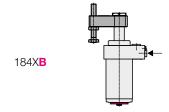
Pneumatic position monitoring integrated

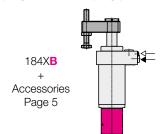

Monitoring of the clamping arm in clamping position (adjustable)

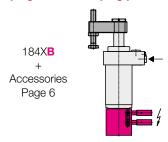


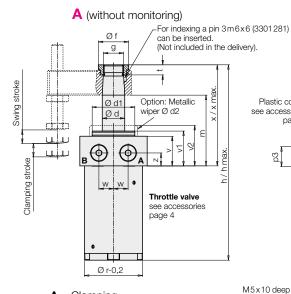
Monitoring of the piston in unclamping position

Both controls combined




Drilled channels


Position monitoring as accessories Switch rod for external sensors

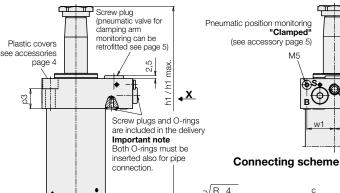

Pneumatic position monitoring in clamping and unclamping position

Electrical position monitoring in clamping and unclamping position

Versions: Code letters A, B, C, D, H, P, Q **Dimensions • Swing angles**

A = Clamping

B = Unclamping


E = Unclamped (pneumatic)

S = Clamped (pneumatic)

Clamping position ±1° Swing direction Swing direction Example for Øp1 Indexing mark Ø p2 see page 4 5 x 45° nax. at both sides only for 184<u>3</u> Pneumatic port M5 at both sides at 45° only for 1843 B, D and H

swing angle < 90° off-position ±3° wing angle 90° off-position ±3° clamping position Plastic covers

B (with switch rod)

(0,04|100 Position monitoring see accessories page 5 and 6

 \odot

Use screws 12.9

Connecting holes:

Required for pneumatic position monitoring
"Unclamped"
versions D, H and Q

or B with accessory page 5

Silencer for the versions C, H and Q

Nut included in the delivery Spare nut see page 4.

"Unclamped"

versions D. H and Q

Pneumatic position monitoring

or B with accessory page 5

Required for pneumatic valve
"Clamping arm in clamping position" C. H and Q

Bore holes A and B In case of pipe thread not required

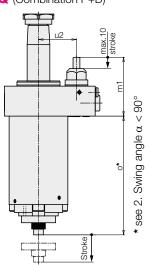
Required for pneumatic position monitoring "Clamped" (see accessory page 5)

Spare-O-ring 8 x 1.5 part no. 3000343 3 x pneumatics max. Ø 2.5 (only as required) Spare-O-ring 3.68 x 1.78 part no. 3000 334

о,

H (Combination C+D) Q (Combination P+D)

2 x hydraulics (A, B) max. Ø 5


E,

∳⊼

u2

u

View X

Attention danger of collision!

Ø 36 f7

(Monitoring "Clamped")

Switching area 2 ÷ 9 mm

Switching area 2 ÷ 10 mm

Pneumatic valve

(actuated by the clamping arm)

Silencer

for pneumatic valve

The contact bolt for the actuation of the pneumatic valve must be completely screwed into the angle bracket for start up (see page 4

The adjustment is made with clamped workpiece to approx. 5 mm

Swing angle

1. Swing angle 90° (standard)

Part no.

90° cw 184X X090 RXXD 90° ccw 184X X090 LXXD 0° 184X X000 0XXD

2. Swing angle α < 90°

α = 15° to 75° in gradation of 5°

By insertion of a distance plate the return stroke of the piston is reduced and thus the swing angle is reduced.

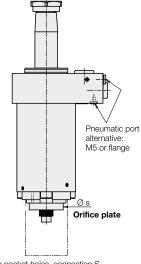
Clamping stroke and clamping position remain the same. The swing stroke and the dimensions h, h1, m and x are reduced by y:

 $y = (90^{\circ} - \alpha^{\circ}) * k$ (k see chart page 3)

Example:

1845 A090 L30D Swing clamp

Desired swing angle 45° ccw 1845 A045 L30D Part no.

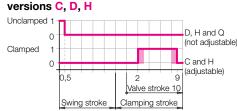

Shortening:

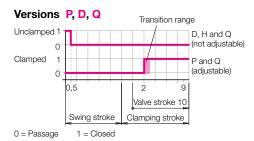
 $y = (90^{\circ} - 45^{\circ}) * 0.12 \text{ mm/}^{\circ} = 5.4 \text{ mm}$

3. Swing angle > 90°

Available on request!

D (Monitoring "Unclamped")




With pocket holes, connection S can be used for venting

Important note

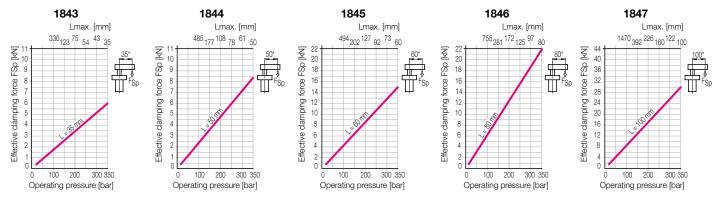
The lower part of the swing clamp must be protected against swarf and dirt for trouble-free functioning of the orifice plate.

Pneumatic position monitoring

Actual issue see wh.roemheld-usa.com/B1853

ROEMHELD North America

Technical data

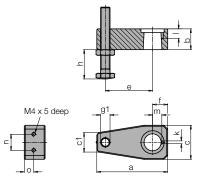

Max. pulling force (350 k		[kN]			18.4	27.5	39.1
Effective clamping force		[kN]		e diagram page 3 or			
Clamping stroke		[mm]			15	15	15
Swing stroke		[mm]		12	15	21	24
Total stroke ± 0.2		[mm]			30	36	39
Min. operating pressure		[bar]			30	30	30
Max. flow rate		m³/s]			32	57	8
(see page 4)	Unclamping [c	m³/s]		28	60	110	18
Effective	Clamping	[cm ²]	2.14	3.01	5.27	7.86	11.19
piston area	Unclamping	[cm ²]	4.15	6.15	10.17	15.9	23.7
Oil volume / stroke		[cm ³]		7.2	15.8	28.3	43.
Oil volume / return strok		[cm³]	9.6	14.8	30.5	57.2	92.
Piston Ø		[mm]			36	45	58
a		[mm]		45	54	66	76
b		[mm]		45	54	66	76
C		[mm]		31.5	35	43	56
					14	18	
c1		[mm]					20.5
Ød		[mm]			25	32	40
Ø d1		[mm]		38	45	48	60
Ø d2		[mm]	33		54	54.5	75
Ø d3		[mm]		10	12	12	12
Øf		[mm]		30	36	40	55
g G		[mm]	M14x1.5	M18x1.5	M20x1.5	M28x1.5	M35x1.8
G			G 1/8	G 1/8	G 1/4	G 1/4	G 1/4
$h + 0.4/-0.3 / h \text{ max.}^{1/2}$)	[mm]	161/162.3	174/175.8	203/204.8	233.5/233.9	254/255.7
h1 +0.4/-0.3 / h1 ma	X. ¹⁾	[mm]	165/166.3	178/179.8	207/208.8	237.5/237.9	257/258.7
k	[n	nm/°]	0.091	0.093	0.12	0.152	0.183
L		[mm]	50	62	75	88	100
L1		[mm]		81	95	105	120
$m + 0.4/-0.7^{2}$		[mm]	62.4	63.9	74.9	80.3	84.8
m1		[mm]		52	56	56	56
n		[mm]		31	37	44	50
0		[mm]		105	118	136	146
					M10	M12	M12
p 0 -1		[mm]					
Ø p1		[mm]		9	11	13	13
Ø p2 H13		[mm]		15	18	20	20
p3		[mm]		15.4	17.4	15.4	17.4
Ør		[mm]		52	60	76	90
Øs		[mm]		30	33	33	33
t		[mm]		9	10	10	1
u		[mm]		42	50	53	62
u1		[mm]		24.5	28	32	35
u2		[mm]		33.5	41.5	44.5	53.5
V		[mm]	26.4	26.4	30.4	30.4	30.4
v1		[mm]	31	31	35	36	36
v2		[mm]	36	36	40	41	4
W		[mm]		13	17	20	20.5
w1		[mm]			28	32	38
w2		[mm]			24.5	25	26
x + 0.3/-0.2 / x max. ¹⁾		[mm]			106/107.7	118.5/118.8	128/129.6
Z		[mm]		11.5	12	12	18
Weight, approx.	0 1 11 11	[kg]		2.3	3.9	6	8.8
	Swing direction 90° cw			1844 X090 R24DM			
	Swing direction 90° ccw 0 degree			1844 X090 L24DM 1844 X000 024DM			
	-						

Code letter \mathbf{X} see page 2.

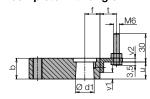
 $\mathbf{M}=$ Option metallic wiper (see also page 6)

h max. / h1 max. / x max. = upper edge nut

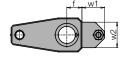
Effective clamping force with accessory clamping arm as a function of the oil pressure

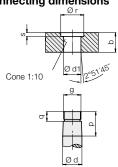


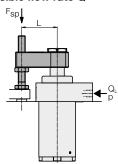
^{*} Clamping force for other lengths see page 4.


¹⁾ h / h1 / x = upper edge piston ²⁾ m = lower edge clamping arm

Accessories - Clamping arms • Plastic covers • Metallic wipers• Flow control valves Calculation of the flow rate • Calculation of the clamping force


Clamping arm, max. 350 bar


Clamping arm complete with angle



Special clamping arm 1. Connecting dimensions

2. Admissible flow rate Q*

In the chart on page 3, the admissible flow rates for clamping and unclamping with the clamping arms (accessories) are specified.

Longer special clamping arms have a higher torque of inertia. To avoid an overload of the swing mechanism, the flow rate has to be reduced:

2.1 Moments of inertia are known

$$Q_L = Q_e * \sqrt{\frac{J_e}{J_L}} cm^3/s$$

 Q_L = Flow rate with special clamping arm

Q_e = Flow rate as per chart (page 3)

 J_e = Moment of inertia of the clamping arm (accessory) with contact bolt (chart)

J_L = Moment of inertia special clamping arm determined with the help of the CAD model in the computer

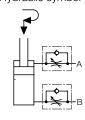
* Only for vertical mounting position!

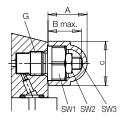
Swing clamps		1843	1844	1845	1846	1847
a	[mm]	58	75	93	120	154
b	[mm]	17	22	26	32	38
С	[mm]	28	36	45	60	72
c1	[mm]	14	20	23	28	36
Ød f7	[mm]	16	20	25	32	40
Ød1 +0.1/+0.05	[mm]	15.8	19.8	24.8	31.8	39.8
е	[mm]	35	50	60	80	100
f	[mm]	16	16	22	26	34
g	[mm]	M14x1.5	M18x1.5	M20x1.5	M28x1.5	M35x1.5
g1	[mm]	M8	M10	M12	M16	M20
h min/max	[mm]	5/45	6/64	7/70	9/85	12/100
Ø k +0.1	[mm]	3	3	3	3	3
I+0.5	[mm]	9.5	11	11	11.5	12
$m \pm 0.05$	[mm]	7.8	9.8	12	15	19
n	[mm]	11	17	20	20	20
0	[mm]	6	10	12	20	20
р	[mm]	22.5	27	32	39	44
q	[mm]	9	10	11	12.7	12.7
Ør	[mm]	20	24.5	31	34.5	46
S	[mm]	2.5	4	4	4.5	5
t	[mm]	11	17.5	19	19	19
u	[mm]	17	18	21	19	25
v1	[mm]	6	7	8	6	12
v2	[mm]	4	4	5	5	5
w1	[mm]	18	24	26	26	26
w2	[mm]	21	27	30	30	30
Part no. Clamping arm						

Part no. Clamping arm						
 with contact bolt 		0354152	0354153	0354154	0354155	0354259
Weight, approx.	[kg]	0.19	0.39	0.69	1.43	2.64
Moment of inertia of J _e	[kgm ²]	0.00011	0.00046	0.0011	0.00398	0.01198
 without thread g1 		3548660	3548661	3548803	3548804	3548919
Weight, approx.	[kg]	0.16	0.34	0.62	1.28	2.34
Moment of inertia of Je	[kgm ²]	0.00007	0.00033	0.00084	0.00298	0.00896
 complete with angle 		0354156	0354157	0354158	0354159	0354175
Angle bracket complete		0184003	0184004	0184005	0184005	0184005
Plastic cover**		3300685	3300684	3300683	3300682	3300682
Metallic wiper		0341 104	0341 107	0341 105	0341 100	0341 101
Spare nut		3527092	3527014	3527099	3527015	3527048
Tightening torque	[Nm]	16	30	42	90	160
** Order 4 off per swing clamp						

2.2. Accessory Throttle valve

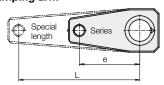
Throttle valves are used


- in order to reduce the swing speed of the clamping arm;
- in order to improve the synchronism of several swing clamps.


This application is only possible for manifoldmounting connection through drilled channels.

Important note

If throttling is too strong, the back pressure can trigger premature switching of pressure switches and sequence valves.


Hydraulic symbol

Swing clamps			1845
		1843	1846
		1844	1847
A	[mm]	16	21
B max.	[mm]	13.5	17.5
C	[mm]	18	23.6
G		G 1/8	G 1/4
SW1	[mm]	14	19
Tightening torque	[Nm]	18	35
SW2	[mm]	8	8
SW3	[mm]	2.5	2.5
Weight	[kg]	0.025	0.036
Part no.		2957209	2957210

Special clamping arm

Clamping force and admissible operating pressure

Effective clamping force (general)

$$F_{Sp} = \frac{p}{A + (B * L)} \le F_{adm.}$$
 [kN]

Admissible clamping force

$$F_{adm} = \frac{C}{L}$$
 [kN]

$$\label{eq:padm} \mbox{Admissible operating pressure} \\ p_{\mbox{adm}} \, = \frac{D}{L} \, + \, E \leq 350 \qquad \qquad \mbox{[bar]}$$

L = special length [mm] p = pressure [bar]

A, B, C, D, E = constants as per chart

Constant

	1843	1844	1845	1846	1847
Α	46.64	33.15	18.98	12.72	8.93
В	0.335	0.17	0.073	0.04	0.027
С	210	420	900	1760	3000
D	9795	13926	17078	22386	26805
E	70.26	71.33	65.44	70.36	81.78

Example: Swing clamps 1843

L = 70 mm

1. Admissible clamping force

$$F_{\text{adm}} = \frac{C}{L} = \frac{210}{70} = 3 \text{ kN}$$

2. Admissible operating pressure
$$\frac{p_{adm}}{=} \frac{D}{L} + E = \frac{9795}{70} + 70.26 = 210 \text{ bar}$$

Accessories for 184XB0XX • Pneumatic position monitoring (not adjustable) Pneumatic valve

Application

A prerequisite for automated processes of workpiece clamping are hydraulic clamping elements whose position can be monitored at any time. The pneumatic position monitorings signal the following conditions by closing two bore holes:

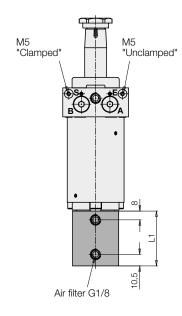
- 1. Piston extended, clamping arm in off-position.
- 2. Piston in clamping area, clamping arm in clamping position.

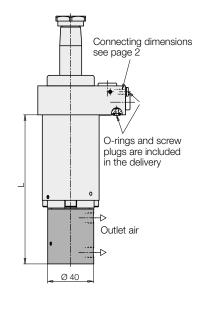
By the pressure increase in the pneumatic line an electro-pneumatic pressure switch or a differential pressure switch can be actuated.

The electrical switching devices are integrated in the electric control so that on the clamping fixture no electricity is required.

Description

The pneumatic position monitoring consists of the stainless control housing with fit signal sleeve, to be connected to the switch rod of the swing clamp by means of the delivered screw. Four fixing screws are included in our delivery.

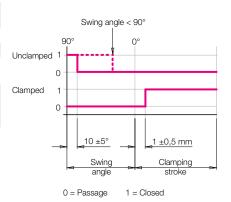

Pneumatic port


Drilled channels

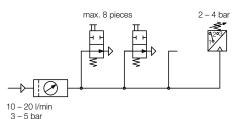
The swing clamp with the mounted position monitoring is inserted into the location hole and is immediately ready for use with the mounted O-rings.

Hose connection

Remove the plugs M5 and screw-in connecting nipple M5 (accessory) Sealing to the flange area is made by the two O-rings.



Technical data


Port		O-ring or thread M5
Nominal diameter	[mm]	2
Max. air pressure	[bar]	10
Range of operating pressure	[bar]	35
Differential pressure*) at		
3 bar system pressure	[bar]	min. 1.5
5 bar system pressure	[bar]	min. 3.5
Air flow rate **)	[l/min]	1020

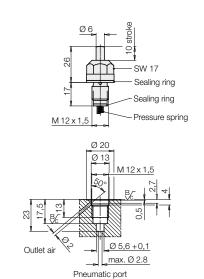
- *) Required pressure drop if one or several position monitorings are not operated.
- **) For measuring the air flow rate appropriate devices are available. Please contact us.

Function chart

Monitoring by pneumatic pressure switch

For the evaluation of the pneumatic pressure built-up standard pneumatic pressure switches can be used. It is possible to monitor with one pressure switch up to 8 position monitorings connected in series (see circuit diagram).

It has to be considered that process-safe functioning of pneumatic position monitorings is only guaranteed with throttled air and system pressure. The nominal values are indicated below technical characteristics.


Part no.

Swing cla	amps	1843B0XX	1844B0XX	1845B0XX	1846B0XX	1847B0XX
L	[mm]	129	136	172	190	200
L1	[mm]	50	50	73	73	73
Swing ar	ngle (see pa	ge 2)				
0 or 90°		0353913	0353913	0353914	0353916	0353956
15 to 75	$5^{\circ} = XX$	03539130XX	03539130XX	03539140XX	03539160XX	03539560XX
(graduati	on of 5°)					

Pneumatic valve

Spare part for versions C, H, P and Q

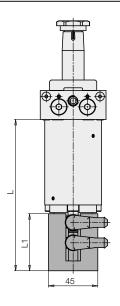
	Part no.
Switching range 2 - 9 mm	0353933
Switching range 2 – 10 mm	0353934
Max. operating pressure	10 bar
Max. tightening torque	25 Nm
Function charts see page 2.	

Accessory for 184XBOXX • Electrical position monitoring (adjustable) Important notes • Wiper system • Throttling of flow rate

Application

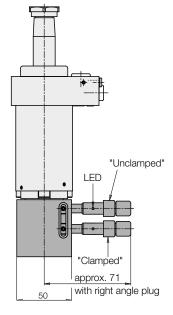
Electrical position monitorings signal the following conditions due to damping of two inductive proximity switches:

- Piston extended, clamping arm in off-position.
- 2. Piston in clamping area, clamping arm in clamping position.
- Piston in final position, no workpiece inserted. *)
- *) If this function is not desired, e.g. in setting mode, the proximity switch can be adjusted so that the switch is still damped at the stroke end (see function chart).

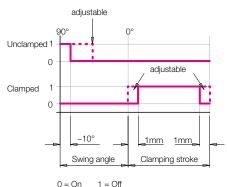

Description

The electrical position monitoring consists of the housing with two adjustable inductive proximity switches and one switching cam fixed at the switch rod of the swing clamp.

The fixing screws are included in our delivery. The housing can also be mounted turned by 180°. The radial distance of the proximity switches to the switching cam should be 0.5 mm. It is secured by means of a set screw M4. After untightening of the locking screw M4 the proximity switches can be axially displaced.


Please note:

Careful design is required. According to the corresponding application conditions, safety measures have to be planned and checked later on. Inductive position monitorings are not suitable for the use in coolant and swarf areas.



Technical data

Operating voltage	1030 VDC
Max. residual ripple	15 %
Max. constant current	200 mA
Switching function	interlock
Output	PNP
Material of housing	stainless steel
Thread	M8x1
Code class	IP 67
Ambient temperature	-25+70 °C
LED function display	yes
Protected against short circuits	yes
Type of connection	right angle plug
Length of cable	5 m

Function chart

Part no.

Swing clamps		1843B0XX	1844B0XX	1845B0XX	1846B0XX	1847B0XX
L	[mm]	131	138	172	190	200
L1	[mm]	52	52	73	73	73
With switch and I	plug	0353905	0353905	0353915	0353915	0353915
Without switch a	nd plug	0353906	0353906	0353917	0353917	0353917

Important notes

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm, there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening and untightening the fixing nut. During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

Remedy: Mount position adaptor.

Operating conditions, tolerances and other data see data sheet A 0.100.

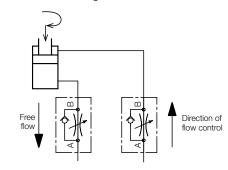
Wiper system

The standard FKM wiper has a high chemical resistance against most cooling and cutting fluids

The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf.

It consists of a radially floating wiping disk and a retaining disk.

The metallic wiper can be delivered already mounted ("M") or as an accessory for retrofitting (see page 4).


Attention!

The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection effect.

If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk.

Throttling of the flow rate

A flow rate throttling always has to be effected in the supply line to the swing clamp. This avoids a pressure intensification and thereby pressures exceeding 350 bar.

Indexina

Metallic wiper

Swing Clamps with Sturdy Swing Mechanism

Bottom flange type, with optional position monitoring, double acting, max. operating pressure 350 bar

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Due to the sturdy swing mechanism and the manifold possibilities of position monitoring these swing clamps are particularly suited for

- Automatic manufacturing systems
- · Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Test systems for motors, gears and axes
- Assembly lines
- Special machine tools

Description

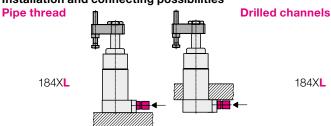
The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston.

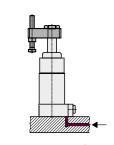
The favourable area ratio (piston/piston rod) allows high clamping forces already at relatively low oil pressures.

Due to the sturdy swing mechanism the angle position of the clamping arm remains the same after a slight collision with the workpiece during loading or unloading. Also a collision during the clamping process is not critical.

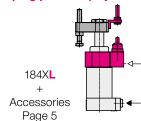
When using high flow rates the swing speed is limited by installed throttle points.

The FKM wiper at the piston rod can be protected against coarse and hot swarf by an optionally available metallic wiper (see page 6).

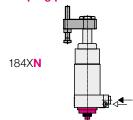

The different possibilities of the position monitoring are presented at the side.

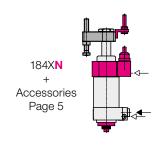

Important notes see page 6.

Advantages


- 4 sizes available
- Compact design partially recessible
- High clamping force at low pressures
- Sturdy swing mechanism
- Insensitive against high flow rates
- Indexing of the clamping arm in a specified position is possible
- Special swing angle easily realizable
- Standard FKM wiper
- Metallic wiper optional
- Screw counterbores coverable
- Position monitoring available in six variants
- Hydraulic and pneumatic ports integrated in the flange
- Mounting position: any

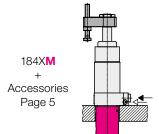
Installation and connecting possibilities



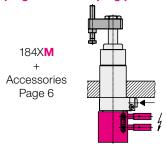

Pneumatic position monitoring Monitoring of the clamping arm in clamping position (adjustable)

Monitoring of the piston in unclamping position

Both controls combined


Position monitoring as accessories

Switch rod for external sensors


184XL

Pneumatic position monitoring in clamping and unclamping position

Electrical position monitoring in clamping and unclamping position

Versions: Code letters L, M, N Dimensions • Swing angles

M (with switch rod)

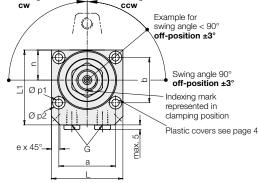
(without monitoring) For indexing a pin 3m6x6 (3301 281) can be inserted. (Not included in the delivery). Swing stroke Ø d1 Option: Metallic Ød wiper Ød2 ليلي Clamping stroke 0 ⋝ Ø r-0 2

A = Clamping

B = Unclamping

E = Unclamped (pneumatic)

S = Clamped (pneumatic)


View X Nut included in the delivery. Spare nut see page 4. <u>X</u> Pneumatic position Pneumatic position monitoring "Unclamped Version M monitoring "Clamped" Plastic covers Version M see accessories with accessory page 5 page 4 with accessory page 5 or version N Ød3 Ø 36 f7 M5 x 10 deep Screw plugs and Accessories: O-rings are position monitorings included in the delivery

For O-ring sealing:

 $\sqrt{R_7}$ 4

0,04 100

Clamping position ±1° Swing direction Swing direction

Bore holes A and B not required for pipe connection Required for pneumatic position monitoring "Unclamped" Version M M5 "Unclamped" Orifice plate

N (Monitoring "Unclamped")

see page 5 and 6

With blind hole, port S can be used for venting.

with accessory page 5 with accessory page 5 or version N 2 x hydraulics (A, B) max. Ø 5 Spare O-ring 8x1,5 Part no. 3000343 2 x pneumatics (E, S) max. Ø 2.5 (only as required) Connecting holes: Spare O-ring 3.68x1.78 Part no. 3000334

 $\phi^{\hat{\mathbf{B}}}$

u1 u1

Connecting scheme

M and N

Required for versions

Use screws 12.9

Required for pneumatic

position monitoring "Clamped"

Swing angle

1. Swing angle 90° (standard)

Part no. 90° cw 184X X090 RXX 90° ccw 184X X090 LXX 0° 184X X0000XX

2. Swing angle α < 90°

α = 15° to 75° in gradation of 5°

By insertion of a distance plate the return stroke of the piston is reduced and thus the swing angle is reduced.

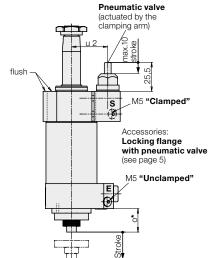
Clamping stroke and clamping position remain the same. The swing stroke and the dimensions h, h1, and m are reduced by y:

 $y = (90^{\circ} - \alpha^{\circ}) * k$ (k see chart page 3)

Dimensions 3 ± 0.5 and o of the switch rod are lengthened by the value y.

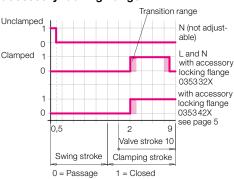
Example:

Swing clamp 1845 L090 L30 Desired swing angle 45° ccw Part no. 1845 L045 L30


Shortening:

 $y = (90^{\circ} - 45^{\circ}) * 0.12 \text{ mm/}^{\circ} = 5.4 \text{ mm}$

3. Swing angle > 90°


Available on request!

N (Monitoring "Unclamped" and "Clamped")

* see 2. Swing angle α < 90°

Pneumatic position monitoring for versions L and N with accessory locking flange

Attention danger of collision!

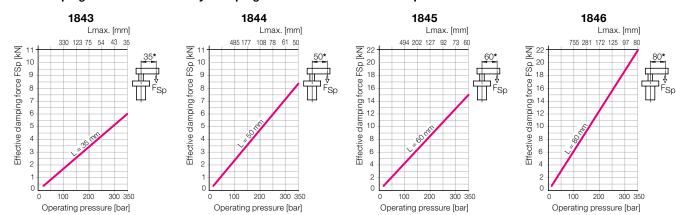
The contact bolt for the actuation of the pneumatic valve must be completely screwed into the angle bracket for start up (see page 4 dimension 3.5 mm)

The adjustment is made with clamped workpiece to approx. 5 mm valve stroke

Important note!

The lower part of the swing clamp must be protected against swarf and dirt for trouble-free functioning of the orifice plate.

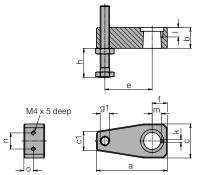
Technical data

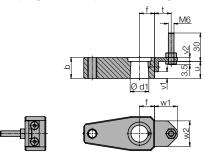

Max. pulling force (350 ba		N]	7.5	10.5	18.4	27.5
Effective clamping force	[kl	N]	see diagram p	page 3 or calculation	of the clamping force	on page 4
Clamping stroke	[m	m]	12	12	15	15
Swing stroke	[m	m	11	12	15	21
Total stroke ±0.2	[m	mÌ	23	24	30	36
Min. operating pressure	[ba	ar]	30	30	30	30
Max. flow rate	Clamping [cr	n³/s]	10	14	32	57
(see page 4)	Unclamping [cr	n³/sĺ	20	28	60	110
Effective piston area		n²] Î	2.14	3.01	5.27	7.86
·	Unclamping [cr	n²j	4.15	6.15	10.17	15.9
Oil volume / stroke	. jcr	n³ĺ	4.9	7.2	15.8	28.3
Oil to return	[cr		9.6	14.8	30.5	57.2
Piston Ø	ĺm		23	28	36	45
a	[m	mĺ	44	50	60	68
b	ĺm		35	40	46	62
С	ĺm		26	28.5	28.5	35.5
c1	[m		11	13.5	14	17
Ød	[m		16	20	25	32
Ø d1	[m		28	38	45	48
Ø d2	[m		33	42	54	54.5
Ø d3	[m		10	10	12	12
e	[m		8.5	7.5	9	8 x 50°
Øf	[m		27	30	36	40
	[m		M14 x 1.5	M18 x 1.5	M20 x 1.5	M28 x 1.5
g G	[111	1111	G 1/8	G 1/8	G 1/4	G 1/4
$h + 0.4/-0.3/h \text{ max.}^{1}$	[m	ml	161 / 162.3	174 / 175.8	203 / 204.8	233.5 / 233.9
k		m/°]	0.091	0.093	0.12	0.152
L	[m		55	63	77	85
L1	[m		60	66	75	90
$m + 0.5 / -0.8^{2}$	[m		139.3	147.8	171.8	195.3
n +0.5/-0.6 /	[m		23	26.5	31.5	39.5
0	[m		21	21	21	21
			M5	M6	M8	M8
p Ø p1	[m [m		5.5	6.5	9	9
Ø p2 H13	[m		10	11	15	15
			15	14	14	14
p3	[m		18	17	18	18
p4 Ø r	[m		45	52	60	76
	[m			30	33	33
Øs	[m		30			
t	[m		7.5	9	10	10
U	[m		27	30.5	35	43
u1	[m		21	24	29	32.5
u2	[m		32	36	41	48
V	[m		22	22	25	25
v1	[m		108	115	132	151
v2	[m		113	120	137	156
W .	[m		11	13.5	14	17
w1	[m		25	28.5	33.5	36
w2	[m		6	6.5	7	7
Z	[m		13	13.5	14	14
Weight, approx.	[kg		1.7	2.3	3.4	5.7
Part no.	Clockwise rotation 90°		43 X090 R23M	1844 X090 R24M	1845 X090 R30M	1846 X090 R36M
	Swing direction 90° cc	w/ 18	43 X090 L23M	1844 X090 L24M	1845 X090 L30M	1846 X090 L36M
	0 degree		43 X000 023M	1844 X000 024M	1845 X000 030M	1846 X000 036M

Code letter \mathbf{X} see page 2. ¹⁾ h = upper edge piston / h max. = upper edge nut

²⁾ = lower edge clamping arm

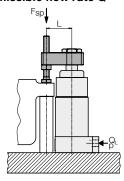
M= Option metallic wiper (see also page 6)


Effective clamping force with accessory clamping arm as a function of the oil pressure


^{*} Clamping force for other lengths see page 4.

Accessories - Clamping arms • Plastic covers • Metallic wipers Calculation of the flow rate • Calculation of the clamping force

Clamping arm, max. 350 bar


Clamping arm complete with angle

Special clamping arm 1. Connecting dimensions

2. Admissible flow rate Q*

In the chart on page 3, the admissible flow rates for clamping and unclamping with the clamping arms (accessories) are specified. Longer special clamping arms have a higher torque of inertia. To avoid an overload of the swing mechanism, the flow rate has to be re-

2.1 Moments of inertia are known

$$Q_L = Q_e * \sqrt{\frac{J_e}{J_L}} cm^3/s$$

Q₁ = Flow rate with special clamping arm

Q_e = Flow rate as per chart (page 3)

J_a = Moment of inertia of the clamping arm (accessory) with contact bolt (chart)

J₁ = Moment of inertia special clamping arm

* Only for vertical mounting position!

Swing clamps		1843	1844	1845	1846
a	[mm]	58	75	93	120
b	[mm]	17	22	26	32
C	[mm]	28	36	45	60
c1	[mm]	14	20	23	28
Ød f7	[mm]	16	20	25	32
Ød1 +0.1/+0.05	[mm]	15.8	19.8	24.8	31.8
е	[mm]	35	50	60	80
f	[mm]	16	16	22	26
g	[mm]	M14 x 1.5	M18 x 1.5	M20 x 1.5	M28 x 1.5
g1	[mm]	M8	M10	M12	M16
h min/max	[mm]	5/45	6/64	7/70	9/85
Ø k +0.1	[mm]	3	3	3	3
I+0.5	[mm]	9.5	11	11	11.5
m ±0.05	[mm]	7.8	9.8	12	15
n	[mm]	11	17	20	20
0	[mm]	6	10	12	20
р	[mm]	22.5	27	32	39
q	[mm]	9	10	11	12.7
q Ør	[mm]	20	24.5	31	34.5
s t	[mm]	2.5	4	4	4.5
t	[mm]	16	20	19	22
u	[mm]	17	18	21	19
v1	[mm]	6	7	8	6
v2	[mm]	4	4	5	5
w1	[mm]	23	26.5	26	29
w2	[mm]	21	27	30	30
Part no. Clamping arm					
 with contact bolt 		0354152	0354 153	0354154	0354 155
Weight, approx.	[kg]	0.19	0.39	0.69	1.43

0.00011 Moment of inertia of Je 0.00046 0.00398 [kgm²] 0.0011 without thread g1 3548 660 3548661 3548803 3548804 [kg [kgm² Weight, approx. 0.16 0.34 0.62 1.28 Moment of inertia of Je 0.00033 0.00084 0.00007 0.00298 0354167 0354168 0354158 0354169 complete with angle 0184006 0184007 0184008 0184005 Angle bracket complete Plastic cover* 3300686 3300685 3300684 3300684 Metallic wiper 0341104 0341107 0341105 0341100 3527092 3527014 3527099 3527015 Spare nut Tightening torque [Nm]

Special clamping arm

**Order 4 off swing clamps

2.2 Moments of inertia not known

This simplified calculation is only applicable for clamping arms of the above shape.

Example: Swing clamps 1843

L = 70 mm

e = 35 mm as per above chart

 $Q_a = 10 \text{ cm}^3/\text{s}$ (as per chart page 3)

 $x = \frac{L}{e} = \frac{70 \text{ mm}}{35 \text{ mm}} = 2$ 1. Extension factor

2. Flow rate factor as per diagram \rightarrow y = 0.35

3. Max. flow rate

 $Q_L = y * Q_e = 0.35 * 10 cm^3/s = 3.5 cm^3/s$ 4. Min. clamping time

as per diagram → approx. 1.4 s factor 0,6 0,8 rate 0,7 0.8 0,6 0,4 0,2 0_ Extension factor x

Adm. flow rate and clamping time as a function of the clamping arm extension

Clamping force and admissible operating pressure

Effective clamping force (general)
$$F_{Sp} = \frac{p}{A + (B * L)} \le F_{adm.} \qquad [kN]$$

Admissible clamping force

$$F_{adm} = \frac{C}{I}$$
 [kN]

Admissible operating pressure
$$p_{\text{adm}} = \frac{D}{L} + E \leq 350 \hspace{1cm} \text{[bar]}$$

L = special length [mm] p = pressure [bar]

A, B, C, D, E = constants as per chart

Constant	1843	1844	1845	1846
Α	46.64	33.15	18.98	12.72
В	0.335	0.17	0.073	0.04
C	210	420	900	1760
D	9795	13926	17078	22386
Е	70.26	71.33	65.44	70.36

Example: Swing clamps 1843

L = 70 mm

1. Admissible clamping force
$$F_{adm} = \frac{C}{L} = \frac{210}{70} = 3 \text{ kN}$$

2. Admissible operating pressure

$$p_{adm} = \frac{D}{L} + E = \frac{9795}{70} + 70.26 = 210 \text{ bar}$$

Accessory for 184XM0XX • Pneumatic position monitoring (not adjustable) Locking flange (adjustable)

Application

A prerequisite for automated processes of workpiece clamping are hydraulic clamping elements whose position can be monitored at any time.

The pneumatic position monitorings signal the following conditions by closing two bore holes:

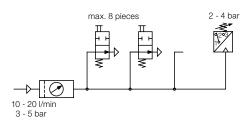
- 1. Piston extended, clamping arm in offposition.
- 2. Piston in clamping area, clamping arm in clamping position.

By the pressure increase in the pneumatic line an electro-pneumatic pressure switch or a differential pressure switch can be actuated.

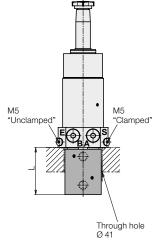
The electrical switching devices are integrated in the electric control so that on the clamping fixture no electricity is required.

Description

The pneumatic position monitoring consists of the stainless control housing with fit signal sleeve, to be connected to the switch rod of the swing clamp by means of the delivered screw. Four fixing screws are included in our delivery.


Pneumatic port **Drilled channels**

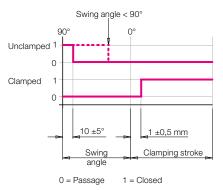
The swing clamp with the mounted position monitoring is inserted into the location hole and is immediately ready for use with the mounted O-rings.


Hose connection

Remove the plugs M5 and screw-in connecting nipple M5 (accessory) Sealing to the flange area is made by the two O-rings.

Monitoring by pneumatic pressure switch

For the evaluation of the pneumatic pressure built-up standard pneumatic pressure switches can be used. It is possible to monitor with one pressure switch up to 8 position monitorings connected in series (see circuit diagram). It has to be considered that process-safe functioning of pneumatic position monitorings is only guaranteed with throttled air and system pressure. The nominal values are indicated below technical data.


Technical data

Connection		O-ring or thread M5
Nominal diameter	[mm]	2
Max. air pressure	[bar]	10
Range of operating pressure	[bar]	35
Differential pressure*) a	t	
3 bar system pressure	[bar]	min. 1.5
5 bar system pressure	[bar]	min. 3.5
Air flow rate **)	[l/min]	1020

- Required pressure drop if one or several position monitorings are not operated.
- For measuring of the flow rate appropriate devices are available. Please contact us.

O-rings and are included Ø 40 Outlet air via Connecting dimensions air filter G1/8 see page 2

Function chart


Part no.					
Swing clamps		1843M0XX	1844M0XX	1845M0XX	1846M0XX
L	[mm]	52	52	75	75
L1	[mm]	50	50	73	73
Swing angle (see p	page 2)				
0 or 90°		0353913	0353913	0353914	0353916
15 to $75^{\circ} = XX$		03539130XX	03539130XX	03539140XX	03539160XX

Locking flange with pneumatic valve

With the integrated pneumatic valve the clamping position can be monitored directly at the clamping arm.

The fixing at the swing is made by tightening both locking screws.

The precise adjustment is made in clamping position with clamped workpiece. The valve tappet has to be pushed by approx. 5 mm (function chart see page 2).

Swing clamps		1843	1844	1845	1846
а	[mm]	68	76	85.5	100
b	[mm]	50	58	66	82
С	[mm]	25	29	33	41
Ød	[mm]	43	50	58	74
е	[mm]	32	36	41.5	48
f	[mm]	12	16	18	22
g	[mm]	12	14	16	18
ĥ	[mm]	43	47	52.5	89
Switching area 2 ÷ 9	mm				
Part no. complete		0353320	0353321	0353322	0353323
Pneumatic valve*		0353933	0353933	0353933	0353933
Switching area 2 ÷ 10) mm				
Part no. complete		0353420	0353421	0353422	0353423
Pneumatic valve*		0353934	0353934	0353934	0353934
			D 4 050 5		

^{*} Installation dimensions for pneumatic valve see B 1.853 page 5

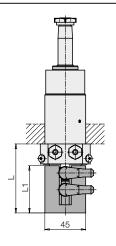
Accessory for 184XM0XX • Electrical position monitoring (adjustable) Important notes • Wiper system • Throttling of flow rate

Application

Electrical position monitorings signal the following conditions due to damping of two inductive proximity switches:

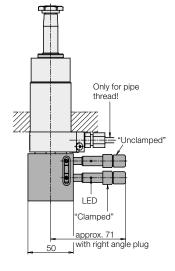
- 1. Piston extended, clamping arm in off-position.
- 2. Piston in clamping area, clamping arm in clamping position.
- Piston in final position, no workpiece inserted. *)
- *) If this function is not desired, e.g. in setting mode, the proximity switch can be adjusted so that the switch is still damped at the stroke end (see function chart).

Description

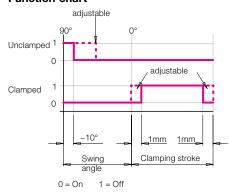

The electrical position monitoring consists of the housing with two adjustable inductive proximity switches and one switching cam fixed at the switch rod of the swing clamp.

The fixing screws are included in our delivery. The housing can also be mounted turned by 180°. The radial distance of the proximity switches to the switching cam should be 0.5 mm. It is secured by means of a set screw M4. After untightening of the locking screw M4 the proximity switches can be axially displaced.

Please note:


Careful design is required. According to the corresponding application conditions, safety measures have to be planned and checked later on.

Inductive position monitorings are not suitable for the use in coolant and swarf areas.



Technical data

Operating voltage	1030 V DC
Max. residual ripple	15 %
Max. constant current	200 mA
Switching function	interlock
Output	PNP
Body material	stainless steel
Thread	M 8 x 1
Code class	IP 67
Environmental temperature	-25+70 °C
LED Function display	yes
Protected against short circuits	yes
Connection type	Right angle plug
Length of cable	5 m

Function chart

Part no.

Swing clamps		1843M0XX	1844M0XX	1845M0XX	1846M0XX
L	[mm]	76	76	100	100
L1	[mm]	52	52	73	73
With switch and plug		0353905	0353905	0353915	0353915
Without switch and plug		0353906	0353906	0353917	0353917

Important notes

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening and untightening the fixing nut. During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

Remedy: Mount position adaptor.

Operating conditions, tolerances and other data see data sheet A 0.100.

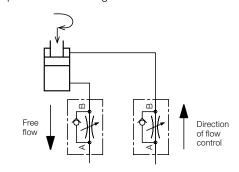
Wiper system

The standard FKM wiper has a high chemical resistance against most cooling and cutting fluids.

The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf.

It consists of a radially floating wiping disk and a retaining disk.

The metallic wiper can be delivered already mounted ("M") or as an accessory for retrofitting (see page 4).

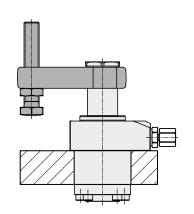

Attention!

The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection effect.

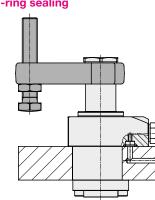
If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk.

Throttling of the flow rate

A flow rate throttling always has to be effected in the supply line to the swing clamp. This avoids a pressure intensification and thereby pressures exceeding 350 bar.


Swing Clamps with Overload Protection Device

top flange, single and double acting, max. operating pressure 500 bar

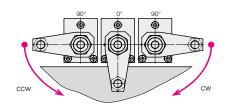


Hydraulic connecting possibilities

Pipe thread

Manifold mounting with O-ring sealing

Application


Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

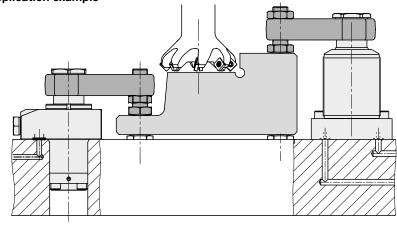
Function

This hydraulic clamping element is a pull-type cylinder where a part of the total stroke is used to swing the piston.

Swing direction

The units are available with clockwise and counterclockwise swing motion or without swing motion (0°). Starting from the off-position.

Standard swing angles are 45°, 60° and 90° $\pm 2^{\circ}$.


Special angles on request.

Other variants, as e.g. versions with metallic wiper on request

0°-Version

Use as pure pull-type cylinder with a piston which is secured against torsion and which allows eccentric load as per clamping force diagram.

Application example

Overload protection device

An integrated mechanical overload protection device prevents damage to the swing mechanism when striking an object within the 90° rotation, clamping or unclamping alike, or in case of incorrect mounting of the clamping arm.

By nitrating wear is reduced and protection against corrosion increased.

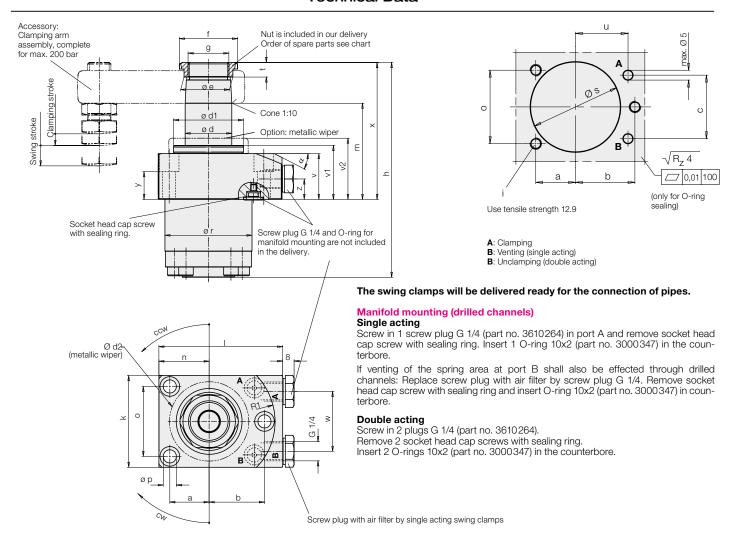
Piston material: High alloy steel
Cylinder body: High alloy steel
Seals: NBR

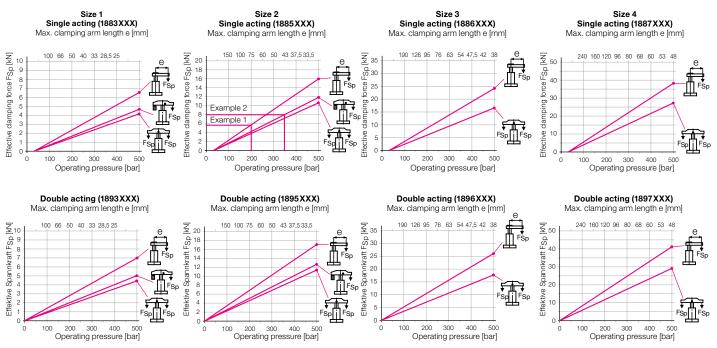
FKM

Wiper:

Operating conditions, tolerances and other data see data sheet A 0.100.

When using single-acting swing clamps, it is absolutely necessary to follow the instructions for venting of the spring area on data sheet G 0.110


Further notes see Page 3.


Option: metallic wiper

These swing clamps are also delivered with mounted metallic wiper that protect the subjacent FKM wiper against swarf (see page 2 and 3).

Dimensions Technical Data

Effective clamping force F_{Sp} as function of operating pressure p

Note:

The clamping force of single-acting swing clamps is reduced by the opposite-directed spring return force.

For this reason the clamping force is slightly lower than that of double-acting swing clamps.

Example 1: 1885 103 single acting.

An operating pressure p of 200 bar in connection with standard clamping arm 0354003 of max. arm length L = 75 mm results in an effective clamping force F_{Sp} of 5.8 kN.

Example 2: 1885 103 single acting.

For a desired effective clamping force F_{Sp} of 8 kN and use of a swing clamp 1885 103 with a standard clamping strap 0354 002 an operating pressure p of 345 bar is required.

Dimensions Technical Data

			Size 1		1	Size 2		1	Size 3			Size 4	
Clamping stroke	[mm]	11	25	50	14	25	50	15	25	50	15	25	50
Swing stroke	[mm]	7	9	9	8	10	10	11	11	11	9	12	12
Total stroke	[mm]	18	34	59	22	35	60	26	36	61	24	37	62
Operating pressure to swing min.	[bar]	30	30	30	30	30	30	30	30	30	30	30	30
Max. oil flow rate	[cm3/s]	3,2	3,2	3,2	10	10	10	18,4	18,4	18,4	27,7	27,7	27,7
Oil volume/stroke	[cm ³]	3,2	6	10,5	10	16	27,2	18,4	25,5	43,2	27,7	43	72
Oil volume/return stroke	[cm ³]	8,8	17	29	27,7	44	76	51	71	120	75	116	194
α	[°]	12	12	12	27	27	27	26	26	26	25	25	25
a	[mm]	20	20	20	27	27	27	37	37	37	42	42	42
b	[mm]	30	30	30	38	38	38	50	50	50	55	55	55
C	[mm]	32	32	32	46	46	46	62	62	62	75	75	75
Ød	[mm]	20	20	20	32	32	32	40	40	40	50	50	50
Ø d1	[mm]	38	38	38	48	48	48	60	60	60	70	70	70
Ø d2	[mm]	42	42	42	54,5	54,5	54,5	75	75	75	87	87	87
Øe	[mm]	23,5	23,5	23,5	33,5	33,5	33,5	45	45	45	55,5	55,5	55,5
f	[mm]	30	30	30	40	40	40	55	55	55	68	68	68
g	[mm]	M 18x1,5	M 18x1,5	M 18x1,5	M 28 x 1,5	M 28 x 1,5			M 35 x 1,5	M 35 x 1,5	M 45 x 1,5	M 45 x 1,5	
h	[mm]	126,5	158,5	208,5	147,5	173,5	223,5	172	192	242	182	208	258
i	[mm]	M 6	M 6	M 6	M 8	M 8	M 8	M 10	M 10	M 10	M 12	M 12	M 12
k	[mm]	50	50	50	63	63	63	85	85	85	95	95	95
	[mm]	70	70	70	85	85	85	110	110	110	125	125	125
m –1	[mm]	57	73	98	66	79	104	70	80	105	69	82	107
n	[mm]	26,5	26,5	26,5	34,5	34,5	34,5	47	47	47	55	55	55
0	[mm]	37	37	37	48	48	48	65	65	65	72	72	72
Øp	[mm]	6.6	6,6	6,6	9	9	9	11	11	11	14	14	14
	[mm]	44,8	44,8	44,8	59,8	59,8	59,8	79,8	79,8	79,8	89,8	89,8	89.8
R1	[mm]	36	36	36	45,3	45,3	45,3	59,5	59,5	59,5	66	66	66
Øs+1	[mm]	45	45	45	60	60	60	80	80	80	90	90	90
t	[mm]	9	9	9	10	10	10	11	11	11	12	12	12
u	[mm]	26,5	26,5	26,5	31	31	31	40	40	40	45	45	45
V	[mm]	26,4	26,4	26,4	31,4	31,4	31,4	29,4	29,4	29,4	29,4	29,4	29,4
v1	[mm]	31	31	31	37	37	37	35	35	35	35	35	35
v2	[mm]	36	36	36	42	42	42	40	40	40	40	40	40
w	[mm]	28	28	28	41	41	41	55	55	55	70	70	70
X	[mm]	78	94	119	94	107	132	104	114	139	109	122	147
у	[mm]	18	18	18	19	19	19	15	15	15	14	14	14
Z	[mm]	14	14	14	14	14	14	12	12	12	12	12	12
Declutch moment of overload protection	[Nm]	3,5	3,5	3,5	11	11	11	17	17	17	22/30**	22/30**	22/30**
Single acting 90°													
Part no.													
Swing direction cw		1883103			1885103			1886103			1887 103		
Swing direction ccw		1883203			1885203			1886203			1887203		
0-degree		1883243			1885243			1886243			1887243		
Double acting 90°													
Part-no													
Swing direction cw		1893103	1893303	1893503	1895103	1895303		1896103	1896303		1897 103		1897503
Swing direction ccw			1893403		1895203	1895403		1896203		1896603	1897203	1897403	
0-degree		1893243	1893443	1893643	1895243	1895443	1895643	1896243	1896443	1896643	1897243	1897443	1897643
Metallic wiper complete (sp	pare part)	0341107			0341100			0341 101			0341 102		
Spare nut		3527014			3527015			3527048			3527016		

^{**} single acting/double acting

Code numbers for available swing angles

Swing angles	Part no.
90°	18XXX0X
60°	18XXX2X
45°	18XXX3X

Important notes

1. Danger of injury

Hydraulic clamping elements can generate considerable forces. Due to the 90° swing motion, the exact clamping and unclamping position cannot be determined in advance. Considerable injuries can be caused to fingers in the effective area of the clamping arm. Remedy: protection device with electrical locking.

2. Admissible oil flow rate

In case of the admissible oil flow rate as per table the shortest possible clamping time is 1 second. If the flow rate of the pump divided by the number of swing clamps is higher than the indicated value in the chart, the flow rate has to be throttled to avoid any overload and thereby high wear. Throttling has to be made in the oil supply line to the swing clamp to rule out a possible pressure intensification. Use only flow control valves which allow oil return from the swing clamp without any impediments.

	Part no.
Spare O-ring 10x2	3000347
Plua G 1/4	3610264

3. Unimpeded swing motion

The swing motion must not be impeded and the clamping arm may only contact the workpiece after completion of the swing stroke.

4. Clamping arm assembly

When tightening and untightening the fixing screw, the clamping arm has to be backed up to avoid the introduction of moments to the piston rod.

5. Adjustment of contact bolt

The contact bolt may only contact the workpiece after completion of the swing motion. When tightening and untightening the fixing screw, the clamping arm has to be backed up (see 4.).

6. Special clamping arms

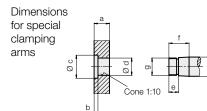
When using special clamping arms with other lengths, the corresponding operating pressures as shown in the clamping force diagram must not be exceeded. If longer clamping arms will be used, not only the operating pressure but also the flow rate have to be reduced (see 2.).

Option metallic wiper for double-acting swing clamps Part no.: 189XXXXM

7. Venting of spring area

The spring area of single-acting swing clamps has to be vented to avoid function problems. A sintered metal air filter avoids penetration of contaminations. If there is a possibility that cutting lubricants and coolants penetrate through the sintered metal air filter into the cylinder's interior, a vent hose has to be connected and be placed in a protected position (see data sheet G 0.110).

8. Bleeding


Air in the oil prolongs the clamping time considerably and leads to function troubles. Therefore bleeding has to be effected during start up.

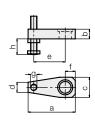
8.1 Pipe thread

Loosen carefully the union nut of the pipe at low oil pressure and pump until bubblefree oil comes out. Retigthen the union nut.

8.2 Flange with O-ring sealing for manifold mounting Loosen carefully the plug G 1/4 at low oil pressure and pump until bubblefree oil comes out. Retigthen the plug.

Accessories

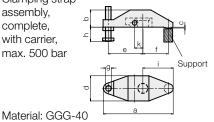
Swing clamp	а	b	Øс	$Ød_{+0.05}^{+0.10}$	е	f g	$Øh_{f7}$	
18X3XXX	16	4	24	19,8	10	21 M 18 x 1,5	20	
18X5XXX	23	5	34	31,8	12	28 M 28 x 1,5	32	
18X6XXX	28	5	46	39,8	12	34 M 35 x 1,5	40	
18X7XXX	34	6	56	49,8	13	40 M 45 x 1,5	50	


Clamping arm, max. 300 bar

Swing clamp	а	b	С	d	е	f	g	h	i	Weight [kg]	Part no.
18X3XXX	51,5	21	32	14	33,5	16	15,5	14,5	7	0,11	3548 238
18X5XXX	76	28	46	25	50	23	22,5	19	7	0,3	3548236
18X6XXX	100	34	66	39	64	33	28	23	7	0,84	3548 301
18X7XXX	123	40	75	39	82,5	37,5	34	27	8	1,3	3548 302

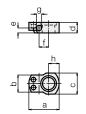
Material: 42CrMo4

Clamping arm assembly, complete, max. 200 bar



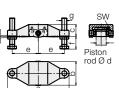
	Swing clamp	а	b	С	d	е	f	g	h max.	h min.	Weight [kg]	Part no.
	18X3XXX	75	16	32	16	50	16	M10	64	6	0,2	0354001
	18X5XXX	115	23	48	22	75	25	M16	79	9	0,7	0354003
۾ ج	18X6XXX	140	28	60	28	95	30	M16	79	9	2,0	0354042
₹₹	18X6XXX 18X7XXX	178	34	78	40	120	40	M20	98	12	2,55	0354005

	Swing clamp	а	b	С	d	f	Weight [kg]	Part no.
	18X3XXX	75	16	32	16	16	0,18	3921016
5	78X5XXX	115	23	48	22	25	0,65	3921017
ᆕ	● 18X6 XXX	140	28	60	28	30	1,85	3921 021
≅	1 8X7XXX	178	34	78	40	40	2,3	3921018


Material: 42CrMo4

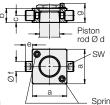
Clamping strap assembly, complete, with carrier, max. 500 bar

Swing clamp	а	b	С	d	е	f	g	h max.	h min.	i	k	Weight [kg]	Part no.
18X3XXX	122	30	1,5	44	60	45	M10	64	6	53	14,5	0,57	0354000
18X5XXX	185	45	2 :	58,5	83	75	M16	79	9	87	21	1,58	0354002


Carrier for special clamping strap

Swing clamp	а	b	С	d	е	f	g ^{H7}	h	Weight [kg]	Part no.
18X3XXX	46	26	32	16	7,5	14,5	8	16	0,08	3542093
18X5XXX	59	32	40	23	13	21	10	22	0,16	3542094
18X6XXX	82	44,5	58	28	17	28	12	34	0,5	3542132
18X7XXX	90	56	68	34	21	33	14	36	0.65	3542096

Material: 42CrMo4


Double clamping arm assembly, complete, with carrier, max. 500 bar

Swing clamp	а	b	С	Ød	е	f min.	f max.	g	SW	Weight [kg]	Part no.
18X3XXX	138	59	28,5	20	60	10	64	M 10	5	0,83	0354131
18X5XXX	196	75	38	32	83	15	79	M 16	8	2,11	0354132
18X6XXX	216	85	47	40	92	15	79	M 16	8	3,17	0354133
18X7XXX	236	105	56	50	100	19	98	M 20	8	5,24	0354134

Material: GGG-40

Carrier, complete with threaded bolt and spring clamping elements

Swing clamp	a±0,1	b	С	Ød	е	Øfg6	g*	SW	Part no.
18X3XXX	43	16	7,5	20	9	10	21,5	5	0354141
18X5XXX	55	23	11	32	11	16	29	8	0354142
18X6XXX	63	28	15	40	12	18	35	8	0354143
18X7XXX	77	34	17	50	15	20	41	8	0354144

^{*} Stop surface for spring elements

Spring elements Material: 42CrMo4

B 1.880 / 11-18 US - page 4

Swing Clamps with Reinforced Swing Mechanism

top flange, position monitoring optional, double acting, max. operating pressure 500 bar

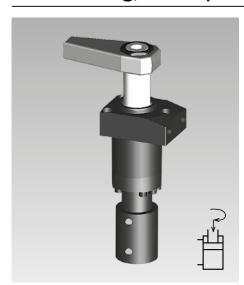


Figure with position monitoring

Application

Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading. Due to the sturdy swing mechanism and the extended switch rod they are particularly suited for

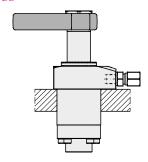
- Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Test systems for motors, gears, axes, etc.
- Automatic manufacturing systems
- Assembly lines

Description

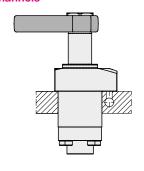
This line is a further development of the proved ROEMHELD swing clamps with the aim to improve process safety in linked clamping systems. The most important data are as follows:

- 1. Omission of the overload protection device In the case of a slight collision with the clamping arm during loading and unloading of the fixture, the angular position of the clamping arm will be maintained. Less critical are the weight of the clamping arm or an increased swing speed.
- 2. Reinforced swing mechanism

The reinforced swing mechanism endures a collision of the clamping arm with the workpiece during clamping up to a pressure of 100 bar.


3. FKM wiper

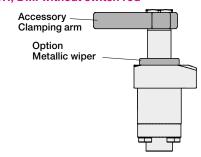
This wiper has a high chemical resistance when using aggressive cutting fluids.


4. Further types of bodies Flange at the bottom: data sheet B 1.8811 Threaded-body type: data sheet B 1.892

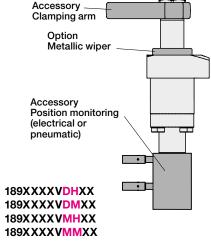
Connecting possibilities

Pipe thread

Drilled channels


Part numbers

Without switch rod, without metallic wiper:
Without switch rod, with metallic wiper:
With switch rod, without metallic wiper:
With switch rod, with metallic wiper:


189XXXXVDMXX
189XXXXVMMXX
189XXXXVMMXX

Versions

DH, DM: without switch rod

MH, MM: with switch rod

Options

Switch rod for position monitoring

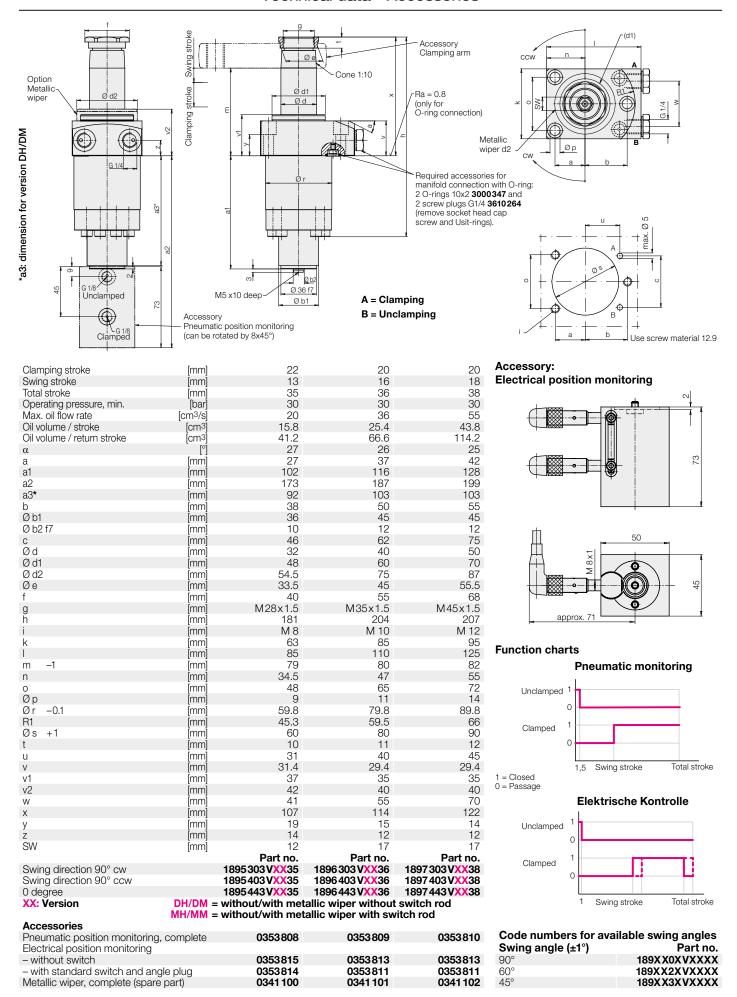
The helix rod protrudes through the cover and allows thereby a pneumatic or electrical monitoring of the piston position outside the swarf area. As an accessory a pneumatic position monitoring is available; the brass control slide being displaced in a stainless housing. The slide opens and closes bore holes, so that a pressure switch or a differential pressure switch can signal the position "Clamped" and "Unclamped".

It is also possible to realise this monitoring directly in the fixture body by means of drilled channels. An electrical position monitoring with inductive proximity switches is also available (see page 2).

Metallic wiper

This wiper protects the FKM wiper against mechanical damage, e.g. by hot swarf. The swing clamp body is prepared for mounting of the metallic wiper. The wiper consists of a radially floating wiping disk and a retaining disk which will be pressed onto the existing collar.

Important notes


Due to the missing overload protection device, assembly and disassembly of the clamping arm has to be made carefully despite the reinforced swing mechanism. When tightening and untightening the fixing nut, the clamping arm or the hexagon socket in the piston has to be backed up. It is recommended to effect tightening and untightening in the swivel area. Frequent collisions with the clamping arm in radial direction have to be avoided.

For interpretation of the pneumatic pressure we recommend to use a differential switch.

Parallel connection for up to 8 swing clamps is possible. For a greater number there are special solutions. Please contact us.

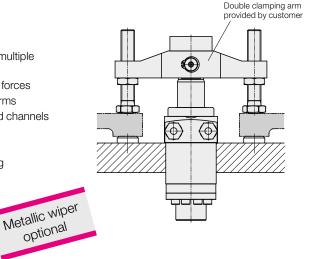
Further important notes see data sheet B 1.880.

Dimensions Technical data • Accessories

Clamping force diagrams and other accessories: see data sheet B 1.880. Further proximity switches: see data sheet B 1.552.

Swing Clamps with Reinforced Swing Mechanism

top flange, position monitoring optional, double acting, pendulum eye/fork head, max. operating pressure 500/160 bar



Advantages

- Introduction of clamping force without side loads
- Compact design
- Double clamping arm facilitates multiple clamping of similar workpieces
- Pendulum eye for high clamping forces
- Fork head for simple clamping arms
- Alternatively pipe thread or drilled channels
- Reinforced swing mechanism
- FKM wiper standard
- Available with position monitoring

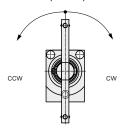
Connecting possibilities

- Pipe thread
- Drilled channels

Function

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.


The version with pendulum eye or fork head allows simultaneous clamping of two work-pieces with half clamping force.

Function

The hydraulic swing clamp is a double-acting pull-type cylinder where a part of the total stroke is used to swing the piston.

Swing direction

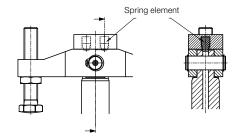
The swing clamps are available with clockwise or counterclockwise swing motion. Off-position is the extended piston position.

Process safety

To improve the process safety when using heavy double clamping arms the swing mechanism has been reinforced and an overload protection device has not been realised.

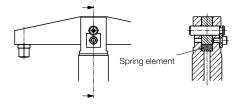
During clamping the reinforced swing mechanism endures a collision of the clamping arm with the workpiece up to a pressure of 100 bar. All versions are also available with a switch rod at the cylinder bottom. The control cams are mounted at this rod to control the clamping and unclamping position with limit switches or pneumatically.

Adaptable position monitorings for inductive or pneumatic control are available as accessory (page 4).


Description

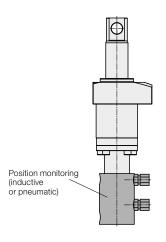
The piston end of this swing clamp is designed as pendulum eye or fork head. By means of a double clamping arm 2 workpieces can be clamped at the same time.

For both versions a springy element is required in order to maintain the double clamping arm in the unclamped position in horizontal position.


Pendulum eye

The sturdy pendulum eye can transmit high clamping forces up to a max. operating pressure of 500 bar. The double clamping arm has to be dimensioned according to the load.

Fork head


The fork head allows a max. operating pressure of 160 bar. Advantageous is the fact that relatively simple clamping arms can be manufactured from flat materials.

Option - metal wiper

The optionally availabe metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarfs.

Swing clamp with optional position monitoring (accessory)

Important notes

Danger of injury

Hydraulic clamping elements generate high clamping forces. Considerable injuries can be caused to fingers in the effective area of the double clamping arm.

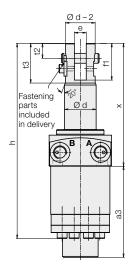
Remedy: mount protection devices.

Operating conditions, tolerances and other data see data sheet A 0.100.

Clamping arm

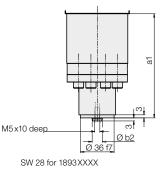
Due to the missing overload protection device a collision with the clamping arm during loading and unloading of the fixture must be avoided. Remedy: mount position adaptor.

The double clamping arm in clamping position should preferably be at right angles to the piston axis to avoid overload of the spring element. Both contact bolts must only contact the workpiece after completion of the swing stroke.


Please consider: For a newly designed double clamping arm, the moment of inertia must be determined to calculate the admissible flow rate using the formula on page 3.

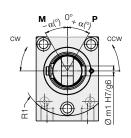
Dimensions Code for part numbers

Pendulum eye 189X 133X (500 bar) without switch rod


Required accessories for manifold connection with O-ring: 2 O-rings 10 x 2 mm and 2 screw plugs G1/4 (remove socket head cap screws and seals).

Camping stroke No. 20
Fork head 189X 153X (160 bar)

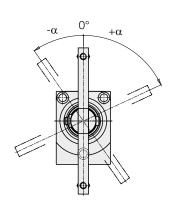
A = Clamping **B** = Unclamping

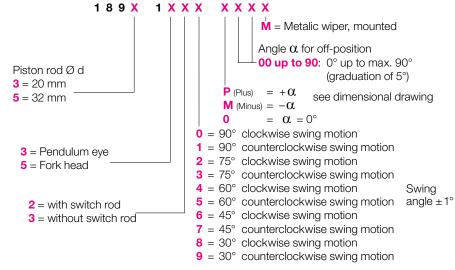

With switch rod 189X1X2X

Accessory: position monitoring see page 4.

Off-position Of

Off-position




Code for part numbers

Off-position (unclamped extended position)

The fixing of the clamping arm with pendulum eye or fork head does not allow an adjustment of the off-position as possible in case of cone fixation. Therefore the desired off-position has to be indicated when placing the order.

The angle α can be selected in steps of 5°.

1. Example of ordering

Piston rod diameter = 20 mm, pendulum eye, without switch rod, swing angle 90° clockwise, off-position 0°, metallic wiper mounted Part no. 1893 1330000M

2. Example of ordering

Piston rod diameter = 32 mm, fork head, with switch rod, swing angle 60° counterclockwise, off-position -30°, metallic wiper mounted

Part no. 1895 1525 M30M

Technical data

		1893	1895
Clamping stroke	[mm]	25	22
Swing stroke	[mm]	9	13
Total stroke	[mm]	34	35
Operating pressure, min.	[bar]	30	30
Adm. flow rate	[cm ³ /s]	8	20
for moment of inertia Effective piston area	[kgm²]	0.00032	0.002295
Clamping	[cm ²]	1.76	4.52
Unclamping	[cm ²]	4.9	12.56
Oil volume/stroke	[cm ³]	6	15.8
Oil volume/return stroke	[cm ³]	16.7	44
β	[°]	12	27
а	[mm]	20	27
a1	[mm]	94	102
a3	[mm]	84	92
b	[mm]	30	38
Ø b1	[mm]	22	36
Ø b2 f7	[mm]	10	10
С	[mm]	32	46
Ød	[mm]	20	32
Ø d1	[mm]	38	48
Ø d2	[mm]	42	54.5
e +0.1	[mm]	8	12
f	[mm]	20	32
f1	[mm]	26	37
g f7	[mm]	12	20
h	[mm]	182	197
k	[mm]	50	63
1	[mm]	70	85
Ø m H7	[mm]	10	16
Ø m1 H7	[mm]	6	10
n	[mm]	26.5	34.5
0	[mm]	37	48
Øp	[mm]	6.6	9
Ør -0.1	[mm]	44.8	59.8
R1	[mm]	36	45.3
t	[mm]	9	15
t1	[mm]	21	33
t2	[mm]	10	15
t3	[mm]	29	40
U	[mm]	26.5	31
V	[mm]	26.4	31.4
v1	[mm]	31	37
v2	[mm]	36	42
W	[mm]	28	41
X	[mm]	104.5	124
У	[mm]	18	19
Z	[mm]	14	14

Admissible flow rate

The admissible flow rate indicated in the chart applies to the use of double clamping arms whose moment of inertia does not exceed the chart value.

The clamping time is thus approx. 0.8 seconds and the unclamping time approx. 2 seconds. For new clamping arms with a different moment of inertia, the admissible flow rate can be calculated using the following formula:

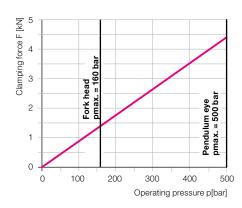
$$Q_2 = Q_1 \times \sqrt{\frac{J_1}{J_2}}$$
 [cm³/s]

 $Q_1 = Adm.$ flow rate (chart value)

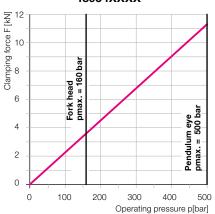
Q₂ = Adm. flow rate with the moment of inertia of the new clamping arm J2

 $J_1 = Moment of inertia (chart value)$

J₂ = Moment of inertia of the new clamping arm


Metallic wiper, complete (customer assembly)	0341 107	0341 100
O-Ring 10 x 2	3000347	3000347
Screw plug G 1/4	3610264	3610264

Clamping force F as a function of the operating pressure p



Accessories

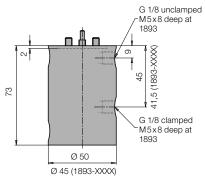
18931XXXX

18951XXXX

Accessory - Position Monitorings

Delivery

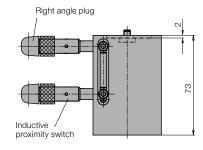
The position monitorings are not delivered mounted at the swing clamp.

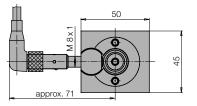

Fixing screws and signal sleeve are included in the delivery.

Electrical position monitorings are delivered with 2 inductive proximity switches and 2 right angle plugs.

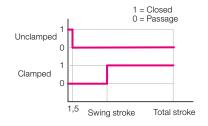
The housings can be mounted rotated by $2 \times 180^{\circ}$ (1893) or $8 \times 45^{\circ}$.

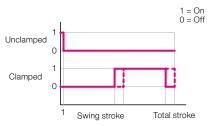
Position monitoring


Pneumatic position monitoring



	for 1893	for 1895
Part no.	0353867	0353808


Electrical position monitoring



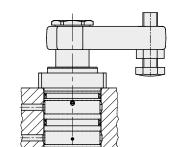
	for 1893	for 1895
Part no.	0353868	0353814

Function chart

Function chart

Technical data for proximity switches

Voltage	1030 V DC
Residual ripple max.	15 %
Constant current max.	200 mA
Switching function	interlock
Output	PNP
Body material	stainless steel
Code class	IP 67
Environmental temperature	-25+70°C
Connection	plug
Length of cable	5 m
LED function display	Yes
Protected against short circuits	Yes


Swing Clamps with Overload Protection Device

cartridge type, double acting, max. operating pressure 500 bar

Advantages

- Compact design
- Double-acting function
- Unimpeded loading and unloading of the fixture
- Mounting position: variable
- Body partially recessible
- Counterbore for flange of the body can be easily manufactured by a milling cutter, since the flange has rounded edges
- Oil supply through drilled channels
- FKM wiper standard
- Metallic wiper for protection of the piston rod available

Connecting possibility

Drilled channels

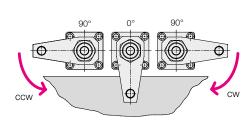
Application

Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Function

This hydraulic clamping element is a pull-type cylinder where a part of the total stroke is used to swing the piston.

Swing direction


The units are available with clockwise and counterclockwise swing motion or without swing motion (0°). Starting from the off-position.

Standard swing angles are 45°, 60° and 90° ±2°.

Special angles on request.

0°-Version

Use as pure pull-type cylinder with a piston which is secured against torsion and which allows eccentric load as per clamping force Application example diagram.

Overload protection device

An integrated mechanical overload protection device prevents damage to the swing mechanism when striking an object within the 90° swing motion, clamping or unclamping alike, or in case of incorrect mounting of the clamping arm.

Material

By nitrating wear is reduced and protection against corrosion increased. Piston material: high alloy steel. Cylinder body: free cutting steel.

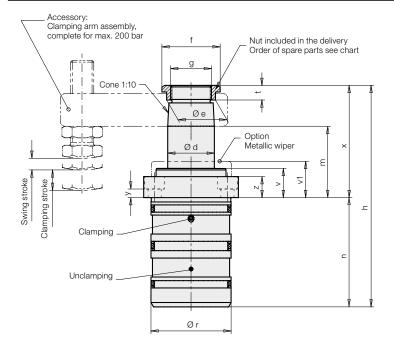
Important notes

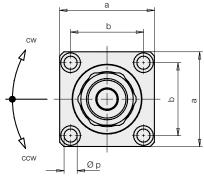
Operating conditions, tolerances and other data see data sheet A 0.100.

Option: metallic wiper

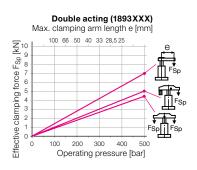
Metallic wiper

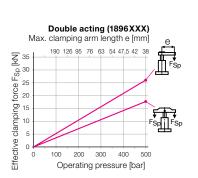
optional

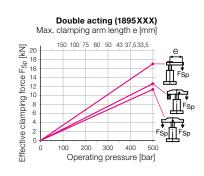

In addition to the FKM wiper all double-acting swing clamps can be equipped with a metallic

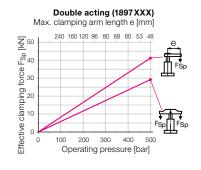

Part no.: Add only letter "M" to the part number of the swing clamp without metallic wiper.

Example of ordering:

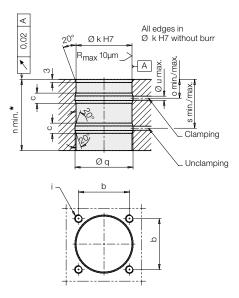

Swing clamp 1895202 with metallic wiper: 1895202M

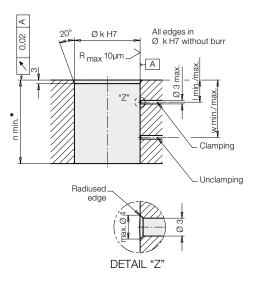

Dimensions Technical data





Effective clamping force \mathbf{F}_{Sp} as a function of the clamping pressure p





Location hole for oil bore Ø 5 / Ø 6

Location hole for oil bore Ø 3

* Min. plate thickness to ensure sealing

Example 1: 1895 102

An operating pressure p of 200 bar in connection with standard clamping arm 0354003 of max. arm length L = 75 mm results in an effective clamping force F_{Sp} of 6.8 kN.

Example 2: 1895 102

For a desired effective clamping force F_{Sp} of 8 kN and use of a swing clamp 1895 102 with a standard clamping strap 0354 002 an operating pressure p of 320 bar is required.

Dimensions Technical data

		Siz	e 1	Siz	e 2	Siz	e 3	Size 4		
Clamping stroke	[mm]	11	25	14	25	15	25	15	25	
Swing stroke	[mm]	7	9	8	10	11	11	9	12	
Total stroke	[mm]	18	34	22	35	26	36	24	37	
Operating pressure. min.	[bar]	30	30	30	30	30	30	30	30	
Max. oil flow rate	[cm ³ /s]	3.2	3.2	10	10	18.4	18.4	27.7	27.7	
Oil volume / stroke	[cm³]	3.2	6	10	16	18.4	25.5	27.7	43	
Oil volume / return stroke	[cm ³]	8.8	17	27.7	44	51	71	75	116	
Ød	[mm]	20	20	32	32	40	40	50	50	
а	[mm]	55	55	65	65	85	85	100	100	
b	[mm]	40	40	50	50	65	65	75	75	
C	[mm]	10	10	10	10	12	12	12	12	
Ø e	[mm]	23.5	23.5	33.5	33.5	45	45	55.5	55.5	
f	[mm]	30	30	40	40	55	55	68	68	
g	[mm]	M 18 x 1.5	M 18 x 1.5	M 28 x 1.5	M 28 x 1.5	M 35 x 1.5	M 35 x 1.5	M 45 x 1.5	M 45 x 1.5	
h	[mm]	125.5	157.5	152	178	172	192	183	209	
İ	[mm]	M 6	M 6	M 8	M 8	M 10	M 10	M 12	M 12	
ØkH7	[mm]	42	42	55	55	70	70	85	85	
l min. / max.	[mm]	13.5/21.5	13.5/21.5	14.5/22.5	14.5/22.5	15.5/26.5	15.5/26.5	18.5/29.5	18.5/29.5	
m –1	[mm]	43	59	49	62	60	70	62	75	
n / n min.	[mm]	61.5/60	77.5/76	75/66	88/79	78/72	88/82	81/76	94/89	
o min. / max.	[mm]	16/19	16/19	17/20	17/20	19/23	19/23	22/26	22/26	
Øp	[mm]	6.6	6.6	9	9	11	11	14	14	
Øq	[mm]	44	44	57	57	72	72	87	87	
Ø r f7	[mm]	42	42	55	55	70	70	85	85	
s min. / max.	[mm]	41.5/44.5	41.5/60.5	46.5/49.5	46.5/62.5	49.5/53.5	49.5/63.5	52/56	52/69	
t	[mm]	9	9	10	10	11	11	12	12	
Ø u max.	[mm]	5	5	5	5	6	6	6	6	
V	[mm]	18	18	20	20	25	25	29	29	
v1	[mm]	23	23	25	25	30	30	34	34	
w min. / max.	[mm]	39/47	39/63	44/52	44/65	45.5/56.5	45.5/66.5	48.5/59.5	48.5/72.5	
Χ	[mm]	64	80	77	90	94	104	102	115	
У	[mm]	6.5	6.5	6	6	8.5	8.5	10.5	10.5	
Z	[mm]	13.4	13.4	14.4	14.4	19.4	19.4	23.4	23.4	
Declutch moment of overload protection	[Nm]	3.5	3.5	11	11	17	17	30	30	
Double acting										
Part no.		1000 100	100000	100=155	1005055	1000155	100005	400=465	400=000	
Swing direction 90° cw		1893102	1893302	1895102	1895302	1896102	1896302	1897102	1897302	
Swing direction 90° ccw		1893202	1893402	1895202	1895402	1896202	1896402	1897202	1897402	

Code numbers for available swing angles

Code Hallibers for a	ranabic owing angle
Swing angle	Part no.
90°	18XXX0X
60°	18XXX2X
45°	18XXX3X

Option - metallic wiper Part no.: 189XXXXM

1893442

1893242

3527014

0341107

Important notes

0 degree

Spare nut

Metallic wiper (spare part)

1. Danger of injury

Hydraulic clamping elements can generate considerable forces. Due to the 90° swing motion, the exact clamping and unclamping position cannot be determined in advance. Considerable injuries can be caused to fingers in the effective area of the clamping arm. Remedy: protection device with electrical locking.

2. Admissible oil flow rate

In case of the admissible oil flow rate as per chart the shortest possible clamping time is 1 second.

If the oil volume is bigger, the overload protection device can snap out. Due to the oil supply through drilled channels, throttling will be nearly impossible. Therefore this line is equipped with a standard throttle bore hole in the body. Thereby a more regular motion of several connected swing clamps will be obtained and the flow rate limited. Nevertheless an additional throttling can be required when using longer clamping arms with bigger weight to avoid snapping out of the overload protection device.

3. Unimpeded swing motion

The swing motion must not be impeded and the clamping arm may only contact the workpiece after completion of the swing stroke.

1895242

3527015

0341100

1895442

1896242

3527048

0341101

4. Clamping arm assembly

When tightening and untightening the lock nut, the clamping arm has to be backed up to avoid the introduction of moments to the piston rod and thereby any deterioration of the swing mechanism.

5. Adjustment of contact bolt

The contact bolt may only contact the workpiece after completion of the swing motion. When tightening and untightening the fixing screw, the clamping arm as to be backed up (see 4.)

6. Special clamping arm

When using special clamping arms with other lengths, the corresponding operating pressures as shown in the clamping force diagram must not be exceeded. If longer clamping arms will be used, not only the operating pressure but also the flow rate have to be reduced (see 2.).

7. Option: metallic wiper

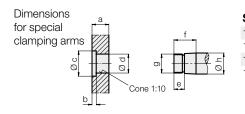
1896442

This wiper protects the FKM wiper against mechanical damage, e.g. by hot swarf. The swing clamp body is prepared for mounting of the metallic wiper. The wiper consists of a radially floating wiping disk and a retaining disk which will be pressed onto the existing collar.

1897242

3527016

0341102


1897442

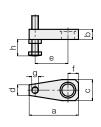
8. Bleeding

Air in the oil prolongs the clamping time considerably and leads to function troubles. Therefore bleeding has to be effected during start up.

In case of drilled channels provide additional bleeding screws.

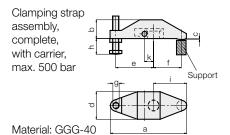
Accessories

Swing clamp	а	b	Øс	$Ød_{+0.05}^{+0.10}$	е	f	g	$\emptyset h_{f7}$
18X3XXX	16	4	24	19.8	10	21	M 18 x 1.5	20
18X5XXX	23	5	34	31.8	12	28	M 28 x 1.5	32
18X6XXX	28	5	46	39.8	12	34	M 35 x 1.5	40
18X7XXX	34	6	56	49.8	13	40	M 45 x 1.5	50

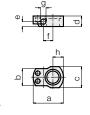

Clamping arm, max. 300 bar

Swing clamp	а	b	С	d	е	f	g	h	i	Weight [kg]	Part no.
18X3XXX	51.5	21	32	14	33.5	16	15.5	14.5	7	0.11	3548 238
18X5XXX	76	28	46	25	50	23	22.5	19	7	0.3	3548 236
18X6XXX	100	34	66	39	64	33	28	23	7	0.84	3548 301
18X7XXX	123	40	75	39	82.5	37.5	34	27	8	1.3	3548 302

Material: 42CrMo4


Clamping arm assembly, complete, max. 200 bar

	Swing clamp	а	b	С	d	е	f	g	h max.	h min.	Weight [kg]	Part no.
7	18X3XXX	75	16	32	16	50	16	M10	64	6	0.2	0354001
ea	18X5XXX	115	23	48	22	75	25	M16	79	9	0.7	0354003
	18X6XXX	140	28	60	28	95	30	M16	79	9	2.0	0354 042
_	18X7XXX	178	34	78	40	120	40	M20	98	12	2.55	0354005

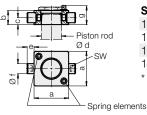

Swing clamp d Weight [kg] Part no. b С 18X3XXX 75 16 32 16 16 0.18 3921016 3921017 48 22 0.65 18X5XXX 115 23 25 18X6XXX 140 28 60 28 30 1.85 3921021 2.3 18X7XXX 178 34 78 40 40 3921018

Material: 42CrMo4

Swing clamp	а	b	С	d	е	f	g	h max.	h min.	i	k	Weight [kg]	Part no.
18X3XXX	122	30	1.5	44	60	45	M10	64	6	53	14.5	0.57	0354000
18X5XXX	185	45	2	58.5	83	75	M16	79	9	87	21	1.58	0354002

Carrier

Swing clamp	а	b	С	d	е	f	g ^{H7}	h	Weight [kg]	Part no.
18X3XXX	46	26	32	16	7.5	14.5	8	16	0.08	3542093
18X5XXX	59	32	40	23	13	21	10	22	0.16	3542094
18X6XXX	82	44.5	58	28	17	28	12	34	0.5	3542132
18X7XXX	90	56	68	34	21	33	14	36	0.65	3542096


Material: 42CrMo4

Double clamping arm assembly, complete, with carrier, max. 500 bar

Swing clamp	а	b	С	Ød	е	f min.	f max.	g	SW	Weight [kg]	Part no.
18X3XXX	138	59	28.5	20	60	10	64	M 10	5	0.83	0354131
18X5XXX	196	75	38	32	83	15	79	M 16	8	2.11	0354132
18X6XXX	216	85	47	40	92	15	79	M 16	8	3.17	0354133
18X7XXX	236	105	56	50	100	19	98	M 20	8	5.24	0354134

Material: GGG-40

Carrier, complete with threaded bolt and spring clamping elements

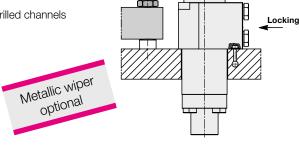
Swing clamp	a±0,1	b	С	Ød	е	Øfg6	g*	SW	Part no.
18X3XXX	43	16	7.5	20	9	10	21.5	5	0354141
18X5XXX	55	23	11	32	11	16	29	8	0354142
18X6XXX	63	28	15	40	12	18	35	8	0354143
18X7XXX	77	34	17	50	15	20	41	8	0354144

^{*} Stop surface for spring elements

Material: 42CrMo4

Swinging

Clamping


Swing Clamp with Piston Rod Locking

Top flange, reinforced swing mechanism, position monitoring optional, double acting, max. operating pressure 250 bar

Advantages

- High process safety
- Self-locking patented piston rod locking
- Reinforced swing mechanism
- Optional position monitoring electrical or pneumatic
- Compact design
- Alternatively pipe thread or drilled channels
- Standard FKM wiper
- Metallic wiper optional

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

The version with piston rod locking maintains the clamping force also after a pressure drop.

This series is particularly suited for

- Pallet changing systems
- Transfer lines
- Workpiece change with handling systems
- Automatic manufacturing systems
- Assembly lines
- \bullet Test systems for motors, gears, axis ...

Function

The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston. The piston rod locking is made by a separately-controlled double-acting wedge-shaped piston.

Clamping:

- 1. Swinging and clamping
- 2. Locking

Unclamping:

- : 1. Release locking
 - 2. Unclamping and swinging

back

Self-locking

The wedge-shaped piston is designed as a self-locking piston so that the swing clamp can be depressurised after clamping. The previously generated clamping force will be maintained. Conditions: Before depressurising, the locking pressure must be available at least for 3 seconds.

Control and important notes

See page 4.

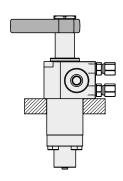
Special features

Self-locking piston rod locking

The patented piston rod locking is made by friction locking by a separately-controllable double-acting wedge-shaped piston with self-locking. In the case of a pressure drop or complete pressure reduction, the clamping force will be maintained.

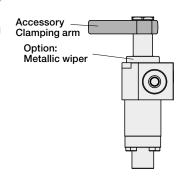
Reinforced swing mechanism

The reinforced swing mechanism without overload protection device endures a collision with the workpiece during clamping up to a pressure of 100 bar.

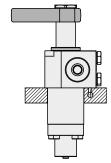

Accessory - Position monitoring

As an option, the swing clamps are available with an extended switch rod at the cylinder bottom. Here a control cam can be fixed to control the clamping and unclamping position. As accessories pneumatic and electrical position monitorings are available.

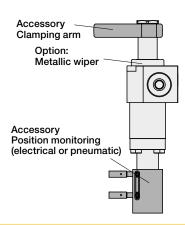
Option: metallic wiper

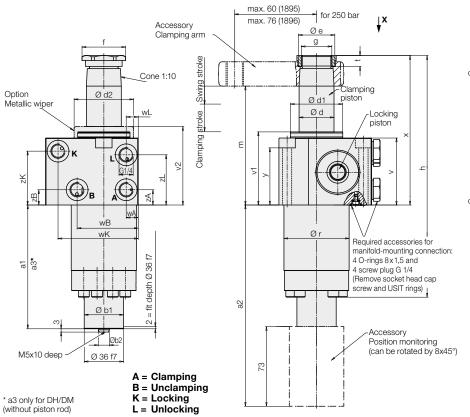

The optionally available metallic wiper protects the FKM wiper against mechanical damage.

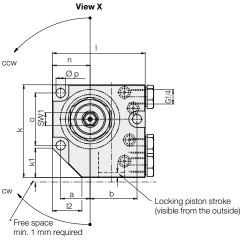
Connecting possibilities Pipe thread

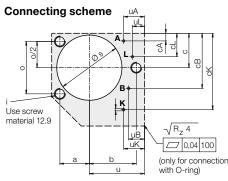


Versions

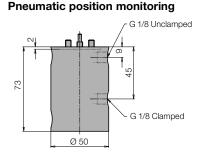

KDH, KDM: without switch rod

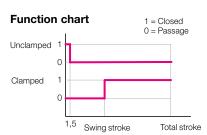

Drilled channels




KMH, KMM: with switch rod

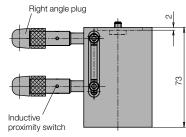
Dimensions Position monitoring

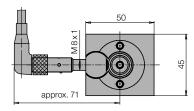


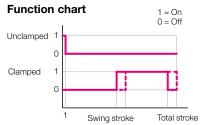


Ports A, B, K, L: max. Ø 6 mm

Accessory - Position monitoring






Part no.	for 1895	for 1896
	0353808	0353809

For the evaluation of the pneumatic position monitoring we recommend a differential pressure switch, which allows a parallel connection of max. 8 swing clamps.

Electrical position monitoring

Part no.	for 1895	for 1896
without switch	0353815	0353813
with standard switches	0353814	0353811

Technical data for proximity switches

1030 V DC
15 %
200 mA
interlock
PNP
stainless steel
IP 67
-25+70°C
Plug
5 m
Yes
s Yes

Delivery

The position monitorings are not delivered mounted at the swing clamp.

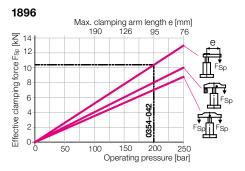
The housings can be mounted rotated by 8x45°. Fixing screws and signal sleeve are included in the delivery.

Electrical position monitorings with standard switches are delivered with 2 inductive proximity switches and 2 right angle plugs.

Part no. O-ring (spare part)	
Proximity switch	3829077
Right angle plug	3829088

Further proximity switches see data sheet B 1.552

Dimensions Technical data


Max. force to pull at 250 bar	[kN]	11.3	17.6
Effective clamping force Clamping stroke	[kN] [mm]	see dia 22	20
Swing stroke	[mm]	13	16
Total stroke		35 ^{+0,4} _{-0,3}	36 ^{+0,3} _{-0,2}
	[mm]	30 _0,3	30 _0,2
Min. operating pressure Max. flow rate	[bar] [cm³/s]	20	36
Oil volume/max.stroke	[cm ³]	18.4	29.8
Oil volume/max. return stroke	[cm ³]	44.4	72.9
a	[mm]	27	37
a1 only MH/MM	[mm]	113.5	129
a2	[mm]	184.5	200
a3* only DH/DM	[mm]	103.5	116
b	[mm]	43	55
Ø b1	[mm]	36	45
Ø b2 f7	[mm]	10	12
C	[mm]	31.5	40.5
cA	[mm]	7	9.5
сВ	[mm]	50.5	72
cK	[mm]	70	89.5
cL	[mm]	21.5	25
Ød	[mm]	32	40
Ø d1	[mm]	48	60
Ø d2	[mm]	54.5	75
Øe	[mm]	33.5	45
f	[mm]	40	55
g	[mm]	M28x1.5	M35x1.5
h	[mm]	221.5	253.8
i	[mm]	M 8	M 10
k	[mm]	85	110
k1	[mm]	27	35
l	[mm]	85	110
12	[mm]	27	35
m ±1	[mm]	109.4	117.9
n	[mm]	34.5	47
0	[mm]	48	65
Ø p Ø r -0.1	[mm]	8.5 59.8	10.5 79.8
Øs +1	[mm]	60	79.6 80
t	[mm]	10	11
U	[mm] [mm]	50.5	63
uA	[mm]	19	23
uB	[mm]	14.5	12.5
uK	[mm]	19	21
uL	[mm]	11	12.5
V	[mm]	61.4	66.4
v1	[mm]	67	72
v2	[mm]	71.9	76.9
wA	[mm]	11	13
wB	[mm]	56	66.5
wK	[mm]	66	89.5
wL	[mm]	11	13
x ^{+0,6} -0,5	[mm]	137	151
x max.*	[mm]	139	153.6
У	[mm]	52.4	55.4
zA	[mm]	14	12
zB	[mm]	14	55.5
zK	[mm]	50.4	55.5
zL	[mm]	46	41
SW1	[mm]	12	17
		Part no.	Part no.
Clockwise rotation 90°		1895304KXX35	1896304KXX36
Counterclockwise rotation 90°		1895404KXX35	1896404KXX36
0 degree		1895444KXX35	1896444KXX36
* Upper edge nut		allia winar without a	itab nad

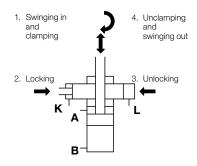
XX: Version DH/DM = without/with metallic wiper without switch rod MH/MM = without/with metallic wiper with switch rod

Accessory	Part no.	Part no.
Metallic wiper, complete (spare part)	0341 100	0341 101
O-ring 8x1.5	3000343	3000343
Screw plug G 1/4	3300821	3300821
Spare nut / tightening torque	3527015 /90 Nm	3527048/160 Nm

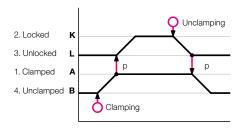
Effective clamping force F_{Sp} as a function of the operating pressure p

Important note

The clamping force diagrams are only valid, if "clamping" and "locking" are are controlled separately (see page 4).

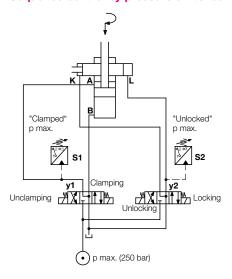

Clamping arms, accessories and special clamping arms see data sheet B 1.881.

Key for available angles of rotation


Part no.
189XX <mark>0</mark> 4KXXXX
189XX <mark>2</mark> 4KXXXX
189XX <mark>3</mark> 4KXXXX

Function flow • Function chart Hydraulic control • Important notes

Function sequence


Function chart

Hydraulic control

The control is effected by two separate doubleacting switching circuits.

Sequence control by pressure switches

Switching sequence

1. Starting position

y1 and y2 de-energised or y1 "Unclamping"; y2 "Unlocking"

2. Clamping

- → 1. y1 "Clamping"; y2 de-energised
- \rightarrow 2. S1 = pmax \rightarrow y2 "Locking"

3. Depressurise (as required)

Before depressurising, the locking pressure must be available at least for 3 seconds.

→ y1 and y2 de-energised

4. Unclamping

- → 1. y2 "Unlocking"
- → 2. S2 = pmax → y1 "Unclamping"

Important notes

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm there is the danger of crushing.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices. The swing clamp has no overload protection

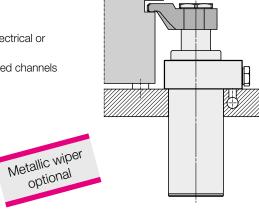
device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening and untightening the fixing nut.

During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided. Remedy: Mount position adaptor.

Operating conditions, tolerances and other data see data sheet A 0.100.

→ Swinging

Clamping


Swing Clamps without Swing Stroke

Top flange, reinforced swing mechanism, position monitoring optional, double acting, max. operating pressure 350 bar

Advantages

- Swing motion without axial stroke
- Swinging in into small recesses
- Compact flange design
- Reinforced swing mechanism
- Optional position monitoring electrical or
- Alternatively pipe thread or drilled channels
- Standard FKM wiper
- Metallic wiper optional

Application

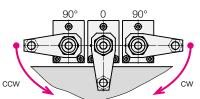
Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Using this version without swing stroke, the clamping arm swings in one level and thereby allows the clamping of workpieces in recesses that are only insignificantly higher than the clamping arm.

The swing clamp without swing stroke is a double-acting pull-type cylinder where a part of the piston stroke is used to swing the piston rod without axial stroke.

Clamping

Function


- 1. The piston rod is rotated together with the clamping arm without axial stroke (swing stroke) in the desired direction.
- 2. After swinging in the clamping arm above the clamping point, the linear clamping stroke will be effected.

Unclamping

- 1. For the linear return stroke, the clamping arm is lifted from the clamping point.
- 2. The piston rod swings the clamping arm without axial stroke back to the off-position.

Swing direction

Optionally available with clockwise or counterclockwise swing motion.

Standard swing angle is 90°

Special swing angles between 20° and 70° are See page 3. available on request.

Special features

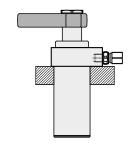
Swinging without axial stroke

This version can clamp workpieces in recesses that are only insignificantly higher than the clamping arm.

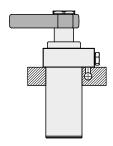
Reinforced swing mechanism

The reinforced swing mechanism without overload protection device endures a collision of the clamping arm with the workpiece during clamping up to a pressure of 100 bar.

Accessory - Position monitoring

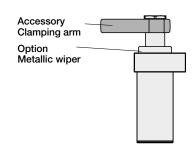

As an option, the swing clamps are available with an extended switch rod at the cylinder bottom. Here a control cam can be fixed to control the clamping and unclamping position. As accessories pneumatic and electrical position monitorings are available.

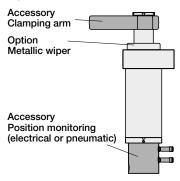
Option - Metallic wiper


The optionally available metallic wiper protects the FKM wiper against mechanical damage.

Connecting possibilities

Pipe thread

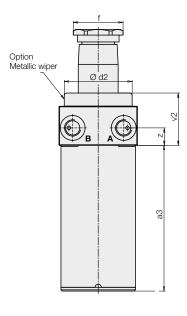

Drilled channels

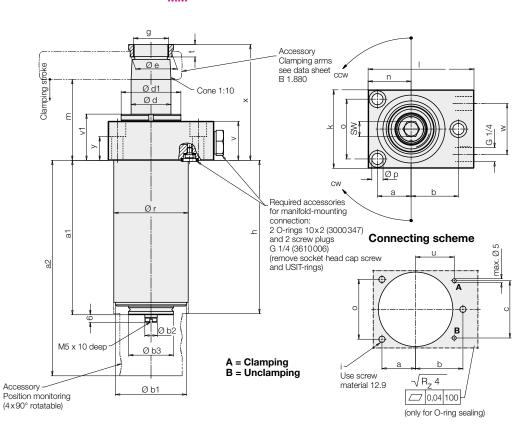

Important notes

Versions

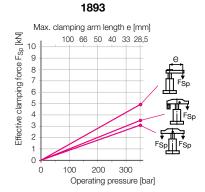
DH, DM: without switch rod

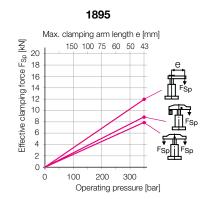
MH, MM: with switch rod

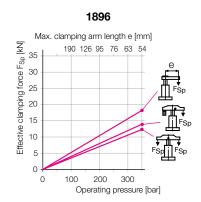

Dimensions Technical data


without switch rod

189X NXXX XX DH


with switch rod


189X NXXX XX MH



Effective clamping force F_{Sp} as a function of the operating pressure p

Dimensions Technical data

Size		1893	1895	1896
Max. force to pull at 350 bar	[kN]	6.1	15.8	24.7
Effective clamping force	[kN]		see diagram	
Clamping stroke	[mm]	12	16	20
Min. operating pressure	[bar]	50	50	50
Max. oil flow rate*	[cm ³ /s]	59	532	560
Oil required for swinging	[cm ³]	3.5	14.6	26.7
clamping stroke	[cm ³]	2.1	7.2	14.1
Total clamping	[cm ³]	5.6	21.8	40.8
Oil volume for unclamping stroke	[cm ³]	5.9	20.1	39.3
ditto with switch rod	[cm ³]	4.9	18.8	37.7
swinging back	[cm ³]	3.5	14.6	26.7
Total unclamping	[cm ³]	9.4	34.7	66
ditto with switch rod	[cm ³]	8.4	33.4	64.4
a	[mm]	20	27	37
a1	[mm]	107.5	132.5	175.6
a2	[mm]	148.5	181.5	230.6
a3	[mm]	99.5	125.5	168.6
b	[mm]	30	38	50
Ø b1	[mm]	41.8	57	77
Ø b2 f7	[mm]	10	10	10
Ø b3 f7	[mm]	30	36	36
C	[mm]	32	46	62
Ød	[mm]	20	32	40
Ø d1	[mm]	38	48	60
Ø d2	[mm]	43	54.5	75
Øe	[mm]	23.5	33.5	45
f	[mm]	30	40	55
g	[mm]	M18x1.5	M28x1.5	M35x1.5
h	[mm]	106.5	131.5	174.6
i	[mm]	M 6	M 8	M 10
k	[mm]	50	63	85
	[mm]	70	85	110
m -1	[mm]	55	65	67
n	[mm]	26.5	34.5	47
0	[mm]	37	48	65
Øp	[mm]	6.6	9	11
Ør -0.1	[mm]	44.8	59.8	79.8
Øs +1	[mm]	45	60	80
t	[mm]	9	10	11
U	[mm]	26.5	31	40
V	[mm]	26.4	31.4	29.4
v1	[mm]	31	37	35
v2	[mm]	36	42	40
W	[mm]	28	41	55
X	[mm]	76	93	101
У	[mm]	18	19	15
y Z	[mm]	14	14	12
SW	[mm]	8	12	17
Part no.	נווווון	٥	12	17
Swing direction 90° cw		1893 N90R 12XX	1895 N90R 16XX	1896 N90R 20XX
Swing direction 90° ccw		1893 N90L 12XX	1895 N90L 16XX	1896 N90L 20XX

Special swing angles between 20° and 70° are available on request.

XX: Version **DH** = without switch rod, without metallic wiper

DM = without switch rod, with metallic wiper MH = with switch rod, without metallic wiper MM = with switch rod, with metallic wiper

Clamping arms and other accessories see data sheet B 1.880.

Important notes

of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

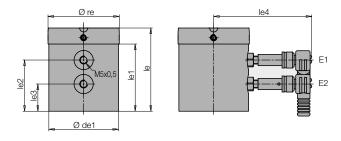
In the effective area of piston rod and clamping arm, there is the danger of crushing.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

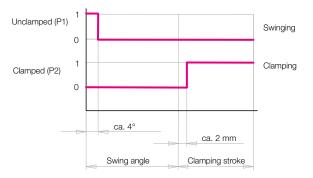
Swing clamps must only be used for clamping The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening and untightening the fixing nut. During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

Remedy: Mount position adaptor.

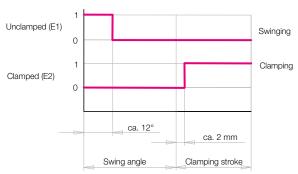
Operating conditions, tolerances and other data see data sheet A 0.100.


^{*} Do not use manually operated pumps as a continuous flow is required.

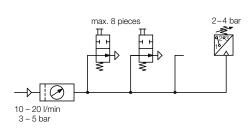
Accessories Position monitoring


Pneumatic position monitoring

G1/8 G1/8 Clamped for 1893 Venting port for 1893 Clamped for 1895 and 1896 and 1896


Electrical position monitoring

Function chart



Function chart

Size		1893	1895	1896
lp	[mm]	52	59	65
lp1	[mm]	42	50	56
lp2	[mm]	33	40	46
lp3	[mm]	18.8	22.8	23.8
lp4	[mm]	9	9	11
Ø rp	[mm]	44.5	59.8	79.8
dp1	[mm]	43.5	50	50
le	[mm]	52	59	65
le1	[mm]	42	50	56
le2	[mm]	32	40	46
le3	[mm]	17	22	22
le4	[mm]	approx. 62	approx. 62	approx. 62
Ø re	[mm]	44.5	59.8	79.8
de1	[mm]	43.5	50	50
Part no.				
Pneumatic position monitoring	g, complete	0353896	0353892	0353903
Electrical position monitoring				
- without switch		0353897	0353893	0353902
- with standard switch		0353909	0353908	0353907

Monitoring by pneumatic pressure switch

For the evaluation of the pneumatic pressure build-up, standard pneumatic pressure switches can be used. It is possible to monitor with one pressure switch up to 8 position monitorings connected in series (see circuit diagram). It has to be considered that process-safe functioning of pneumatic position monitorings is only guaranteed with throttled air and system pressure. The nominal values are indicated below technical characteristics.

Technical data

for pneumatic pressure switches

Port		G 1/8
Nominal diameter	[mm]	2
Max. air pressure	[bar]	10
Range of operating pressure	[bar]	35
Differential pressure*		
at 3 bar system pressure	[bar]	min. 1.5
Differential pressure*		
at 5 bar system pressure	[bar]	min. 3.5
Air flow rate**	[l/min]	1020

- Pressure drop when controlling the function "Clamped", if one or several position monitorings are not operated.
- ** For measuring the air flow rate, appropriate devices are available. Please contact us.

Delivery

The position monitorings are not delivered mounted at the swing clamp. The body, the signal sleeve and two inductive proximity switches with plug are included in the delivery.

Technical data for inductive proximity switches

Operating voltage UB	1030 VDC
Switching function	interlock
Output	PNP
Material of housing	steel, corrosion resistant
Protection as per DIN 40050	IP 67
Ambient temperature	-25 +70 °C
Type of connection	Plug S49 M8x1
LED function display	yes
Constant current max.	100 mA
Rated operating distance	0.8 mm
Protected against short circuits	yes
Part no.	3829 198
Right angle plug with cable 5 m	3829 099

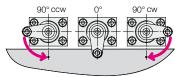
Installation

The control cam can be mounted at the switch rod in $4 \times 90^{\circ}$ position, thus allowing a $4 \times 90^{\circ}$ rotation of the position monitoring. The position monitoring is exactly centred at the swing clamp and is fixed after radial adjustment of the unclamping position with four threaded pins.

Swing Clamp with Overload Protection Device

Bottom flange and threaded body, single and double acting, max. operating pressure 500 bar

Application


Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Description

The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston.

Swing direction

The units are available with clockwise and counterclockwise swing motion or without swing motion (0°).

Standard swing angle 90° ± 2°

Optionally swing angles of 60°, 45° and 0° are available

Further swing angles in steps of 5° are available on request.

0°-Version

Use as pull-type cylinder with a piston which is secured against torsion and which allows eccentric load as per clamping force diagram.

Important notes!

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices. The swing motion must not be impeded to avoid the disengagement of the overload protection device.

When using single-acting swing clamps, it is absolutely necessary to follow the instructions for venting of the spring area see data sheet G 0.110.

Operating conditions, tolerances and other data see data sheet A 0.100.

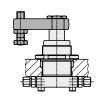
Advantages

- 4 sizes each with 3 clamping stroke lengths available
- Bottom flange or threaded mounting
- Pipe thread or drilled channels
- Single or double-acting function
- Standard FKM wiper
- Metallic wiper optional
- Various clamping arms as accessories

Overload protection device

The overload protection device is a springloaded disengageable coupling between piston and helix rod that protects the swing mechanism against damage in case of

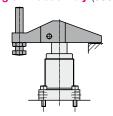
- blocked swing motion
- too high swing speed
- improper fixing of clamping arm.


Installation and connecting possibilities

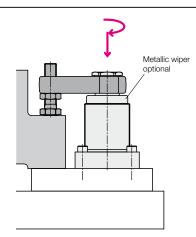
Pipe thread

Bottom flange

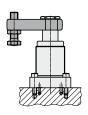
Threaded-body type


Accessories

Clamping arm with contact bolt (200 bar)

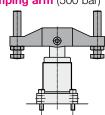

Note: Calculation of the effective clamping force see page 4

Clamping arm assembly (500 bar)


The asymmetric clamping arm assembly is based on a fixed datum.

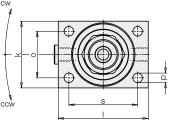
Very high clamping force at 500 bar

Wiper system see page 6.


Drilled channels

Cranked clamping arm (300 bar)

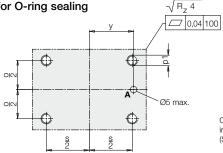
Double clamping arm (500 bar)


The symmetrical double clamping arm can clamp two workpieces simultaneously, the pulling force of the piston is halved.

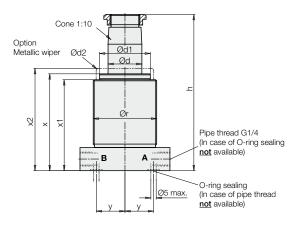
Built-in spring elements ensure horizontal off-position.

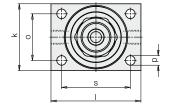
Flange type with pipe thread G 1/4 or with O-ring sealing (see chart)

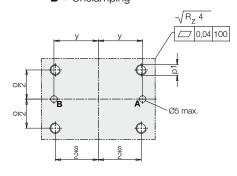
Single acting


with spring return Nut included in our delivery Spare nut see chart g Swing stroke Clamping stroke see page 5 + 6 v. Øw Rework possible Øw Pipe thread G1/4 (In case of O-ring sealing not available) Venting of the spring area see data sheet G 0.110 Screw plug G1/4 with sintered metal air filter (also available for O-ring sealing) O-ring sealing Ø5 max (In case of pipe thread not available) CW

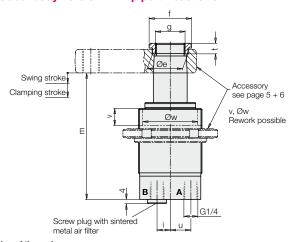
A = Clamping

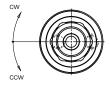

B = Venting


Connecting details for O-ring sealing


O-rings 8 x 1.5 included in our delivery (Spare part 3000 343)

Double acting




A = ClampingB = Unclamping

Threaded-body version with pipe thread G 1/4

(Venting of the spring area see data sheet A.0110)

Mounting position

Mounting preferred in vertical position! Horizontal mounting position is possible with accessory clamping arm (page 5 + 6), but additional flow rate throttling is required to avoid the response of the overload protection device. That is the reason why heavier clamping arms cannot be used!

Cone 1:10

Material

Piston	High alloy steel, nitrated or chromium-plated to size
Body	High alloy steel, nitrated
Sealings	NBR, PTFE (on request FKM)
Wiper	FKM
Metallic wiper	Nitriding steel

Technical data Part numbers

Swing clamps			18X3			18X5			18X6			18X7	
Max. pulling force at 500		8.4			21.4			33.8			55.8		
single acting approx. double-acting approx.	[kN] [kN]	8.83	8.83	8.83	21.4	22.6	22.6	35.3	35.3	35.3	57.6	57.6	57.6
Effective clamping force	[kN]				see dia	agram and	calculation o	f the clamp	ing force on	page 4			
Clamping stroke	[mm]	11	25	50	13	25	50	15	25	50	15	25	50
Swing stroke	[mm]	8	10 35	10	9 22	10 35	10	11	11 36	11	10 25	13	13
Total stroke ±0.2 Declutch moment of	[mm]	19		60			60	26		61		38	63
overload protection	[Nm]	3.5	3.5	3.5	11	11	11	17	17	17	22*/30	30	30
Min. operating pressure													
single acting	[bar]	40			40			35			30		
double acting	[bar]	20	20	20	20	20	20	20	20	20	20	20	20
Adm. flow rate (page 5)	[0.003/0]	0.4	0.4	0.4	10	10	10	10.4	10.4	10.4	00	00	00
Clamping Unclamping**	[cm ³ /s]	3.4 9.4	3.4 9.4	3.4 9.4	10 27.7	10 27.7	10 27.7	18.4 51	18.4 51	18.4 51	29 78	29 78	29 78
Piston area	[011173]	5.4	5.4	5.4	21.1	21.1	21.1	31	31	01	70	70	70
Clamping	[cm ²]		1.767			4.524			7.069			11.537	
Unclamping	[cm ²]		4.909			12.56			19.635			31.172	
Oil volume / stroke										40.0			70
Clamping	[cm ³]	3.4	6.2	10.6	10	16	27.2	18.4	25.5	43.2	29	44	73
Unclamping**	[cm ³]	9.4	17.2 25	29.5	27.7	44 40	76	51	71 50	120	78	119	197
Piston Ø Rod Ø d	[mm] [mm]		20			32			50 40			63 50	
Ø d1	[mm]		38			48			60			70	
Ø d2	[mm]		42			54.5			75			87	
Ø e	[mm]		23.5			33.5			45			55.5	
f	[mm]		SW 27			SW 36			Ø 55			Ø 68	
g	[mm]		M18x1.5			M28x1.5			M35x1.5			M45 x 1.5	
h ± 0.25	[mm]	126.5	158.5	208.5	147.5	173.5	223.5	172	192	242	183	209	259
h max****	[mm]	128.6	160.6	210.6	149.2	175.2	225.2	174.3	194.3	244.3	184.7	210.7	260.7
k	[mm]		12 45			12.5 63			19 80			25.5 90	
K I	[mm] [mm]		65			85			100			115	
m ± 1	[mm]	106.3	138.3	188.3	119.9	145.9	195.9	138.9	158.9	208.9	143.3***	169.3***	219.3***
0	[mm]	100.0	30	100.0	110.0	44	100.0	100.0	60	200.0	1 10.0	68	210.0
Øр	[mm]		6.5			8.5			13.5			16	
p1	[mm]		M 6			M 8			M 12			M 14	
Øq	[mm]		42.7			57.7			77			87.5	
r	[mm]		M45 x 1.5			M60x1.5			M80x2			M90x2	
S	[mm]		50			65			80			90	
t u	[mm] [mm]		9			10 19.5			11 26.5			12 34	
v max.	[mm]		11			19.5			20.5			28	
Ø w min. ****	[mm]		32/42			50/55			60/75			70/87	
X	[mm]	80	96	121	90.5	103.5	128.5	103	113	138	111	124	149
x1	[mm]	75.4	91.4	116.4	84.9	97.9	122.9	97.4	107.4	132.4	105.4	118.4	143.4
x2 + 0.5/-0.4	[mm]	85	101	126	95.5	108.5	133.5	108	118	143	116	129	154
y	[mm]		15			28			31			37.5	
Flange with G1/4 Single acting													
Swing direction cw		1883 1X4			18851X4			18861X4			18871X4		
Swing direction ccw		1883 2X4			18852X4			18862X4			18872X4		
Weight, approx.	[kg]				2.4			4.6			6.2		
Double acting	. 01												
Swing direction cw			18931X8			18951X8	18951X9	18961X4		1896 1X9		1897 1X8	
Swing direction ccw			18932X8		18952X4	18952X8	18952X9	18962X4	18962X8	18962X9	18972X4		18972X9
Weight, approx.	[kg]	1.2	1.4	1.7	2.3	2.6	3.0	4.5	4.9	5.6	6.2	6.6	7.5
Threaded body type Single acting													
Swing direction cw		18833X4			18853X4			18863X4			18873X4		
Swing direction ccw		18834X4			18854X4			18864X4			1887 4X4		
Weight, approx.	[kg]				2.0			4.2			5.6		
Double acting	. 03												
Swing direction cw			18933X8				18953X9	18963X4	18963X8	18963X9		18973X8	
Swing direction ccw			18934X8			18954X8	18954X9	18964X4		18964X9		18974X8	
Weight, approx.	[kg]	1.0	1.2	1.4	1.9	2.2	2.6	3.9	4.3	5	5.6	6.0	6.9
Flange with O-ring sea	aling												
Single acting Swing direction cw		18835X4			1885 5X4			18865X4			18875X4		
Swing direction ccw		18836X4			18856X4			1886 6X4			1887 6X4		
Weight, approx.	[kg]				2.4			4.6			6.2		
Double acting	r91												
Swing direction cw		18935X4	18935X8	18935X9	18955X4	18955X8	18955 <mark>X</mark> 9	18965X4	18965X8	18965X9	18975X4	1897 5X8	18975X9
Swing direction ccw			18936X8		18956X4		18956X9	18966X4	18966X8	18966X9	18976X4		
Weight, approx.	[kg]	1.2	1.4	1.7	2.4	2.6	3.0	4.5	4.9	5.6	6.2	6.6	7.5
Spare parts			0044 : 5			0044 :55			0044.15			0044 155	
Metallic wiper**	ralia		0341107	/20 NI~		0341100	00 Nm		0341101	160 No		0341102	/260 Nlm
Spare nut / tightening to O-ring 8 x 1.5	rque		3527 014 3000 343	OU INM		3527 015/ 3000 343	an inii		3527 048 / 3000 343	IOU IVM		35270167	/260 Nm
O TING OX 1.5			JUUU 343		I	3000343		1	JUUU 343		I	JUUU 343	
Swing angle		Key		With	out swing	angle (0°)	Key		* only sin	gle acting			

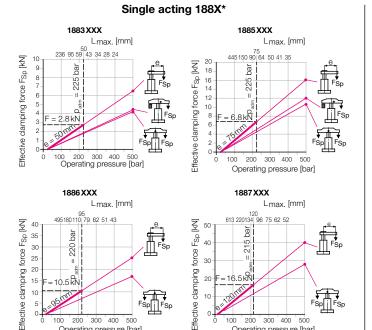
Without swing angle (0°) Key
Flange with G1/4 18XX 24X
Threaded-body type
Flange with O-ring sealing 18XX 64X Key 18XXX<mark>0</mark>X Swing angle 90° 18XX X2X 18XX X3X 60°

* only single acting

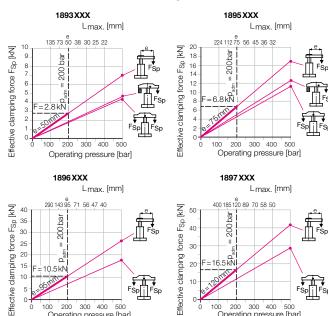
** only double acting

*** with clamping arm assembly 0354 004 +3 mm

**** Upper edge nut


****** without/with metallic wiper

189X XXXM (see also page 6)


Available on request: • Other swing angles, • FKM seals, • Without overload protection

With metallic wiper**

Effective clamping force as function of the operating pressure with accessory clamping arm (page 5)

Double acting 189X

*) In the case of single-acting swing clamps, the spring force has to be considered.

[mm]

[bar]

Single-acting swing clamps

Effective clamping force

$$\mathsf{F}_{\mathsf{Sp}} \, = \frac{\mathsf{p} - \mathsf{F}}{\mathsf{A} + (\mathsf{B} \star \mathsf{L})} \, \leq \, \mathsf{F}_{\mathsf{adm}} \qquad [\mathsf{kN}]$$

Admissible clamping force *

$$F_{adm} = \frac{C}{L}$$
 [kN]

Admissible operating pressure

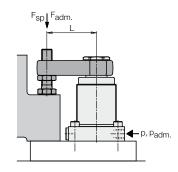
$$p_{adm} = \frac{D}{L} + E + F$$
 [bar]

L = Clamping arm length

p = Pressure

*) With a desired clamping arm length L the clamping force must not exceed the admissible value.

The constants (A....F) for the 4 sizes are shown in the chart.


Constant

	1883	1885	1886	1887
Α	56.59	22.1	14.15	8.67
В	0.297	0.097	0.0514	0.0288
С	140	510	997.5	1980
D	7923	11273	14111	17162
E	41.54	49.7	51.47	57
F	25	25	20	15

Clamping force diagrams

Course of the effective clamping force for the most important accessories of clamping arms:

- 1. Clamping arm complete (L = e)
 The clamping force can be read off up to
 the maximum operating pressure.
 The clamping arm length Lmax in the grid of
 50 bar only allows for a rough estimate.
 Exact values and the corresponding clamping forces can be calculated with the opposite formula.
- 2. Clamping strap assembly complete clamping force up to 500 bar readable.
- 3. Double clamping arm complete
 Clamping force up to 500 bar corresponds
 to half the pulling force of the swing clamp.

Double-acting swing clamps

Effective clamping force

$$F_{Sp} = \frac{p}{A + (B * L)} \le F_{adm}$$
 [kN]

Admissible clamping force*

$$F_{adm} = \frac{C}{L}$$
 [kN]

Admissible operating pressure

$$p_{adm} = \frac{D}{I} + E$$
 [bar]

L = Clamping arm length [mm] p = Pressure [bar]

*) With a desired clamping arm length L the clamping force must not exceed the admissible value.

The constants (A....E) for the 4 sizes are shown in the chart.

Constant

	1893	1895	1896	1897
Α	56.59	22.1	14.15	8.67
В	0.297	0.097	0.0514	0.0288
С	140	510	997.5	1980
D	7923	11273	14111	17162
Ε	41.54	49.7	51.47	57

Example

 $\begin{array}{lll} \text{Swing clamp single acting} & 1885\,104 \\ \text{Accessory clamping arm} & \text{e} = 75\,\,\text{mm} \\ \text{Desired special length} & \text{L} = 150\,\,\text{mm} \end{array}$

1. Admissible clamping force

$$F_{adm} = \frac{C}{L} = \frac{510}{150} = 3.4 \text{ kN}$$

2. Admissible operating pressure

$$p_{adm} = \frac{D}{L} + E + F = \frac{11273}{150} + 49.7 + 25 = 150 \text{ bar}$$

Calculation of the clamping force

The clamping arm of a swing clamp generates a moment and thus a load acts on the piston guide. This additional friction force reduces the clamping force. The longer the clamping arm, the worse is the efficiency.

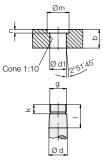
This has been considered in the opposite calculations. The constants were determined by measurements.

Important! The input of the variables must be made in the specified units.

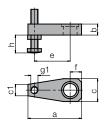
Example

Swing clamp double acting 1895 104 Accessory clamping arm e = 75 mm Desired special length e = 150 mm

1. Admissible clamping force

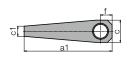

$$F_{adm} = \frac{C}{L} = \frac{510}{150} = 3.4 \text{ kN}$$

2. Admissible operating pressure


$$p_{adm} = \frac{D}{L} + E = \frac{11273}{150} + 49.7 = 125 \text{ bar}$$

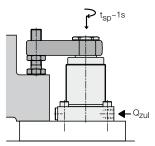
Accessory - Clamping Arm Admissible flow rate • Calculation

Dimensions for special clamping arms


Clamping arm with contact bolt (200 bar)

Clamping arm without thread g1

Clamping arm blank


18X3 18X5 18X6 18X7 Swing clamps а [mm] 75 115 140 178 a1 [mm] 125 190 235 298 b [mm] 16 23 28 34 32 48 60 78 С [mm] с1 [mm] 16 22 28 40 Ød f7 20 32 40 50 [mm] Ød1 + 0.05[mm] 19.85 31.85 39.85 49.85 50 75 95 [mm] 120 е [mm] 16 25 30 40 M18x1.5 M28x1.5 M35 x 1.5 M45 x 1.5 [mm] g1 [mm] M10 M16 M16 M20 15...79 15...79 h min ... max [mm] 10...64 19...98 10 k [mm] 12 12 13 [mm] 21 28 34 40 Øm [mm] 24 34 46 56 [mm] 5 5 6

Part no. Clamping arm 0354001 0354003 0354042 0354005 with contact bolt 2.7 Weight, approx. [kg] 0.26 0.8 1.3 Moment of inertia of J_e [kg·m²] 0.00032 0.002295 0.005212 0.017184 without thread g1 3921016 3921017 3921021 3921018 Weight, approx. 2.3 [kg] 0.18 0.65 1.85 Moment of inertia 0.00018 0.00134 0.00387 0.01294 [kg·m²] **Blank** 3548901 3548 902 3548903 3548904 Weight, approx. [kg] 0.36 1.15 2.1 4.4 Moment of inertia 0.00043 0.00798 0.02343 0.07863 [kg·m²]

Material: High alloy steel 1000 ... 1200 N/mm²

Admissible flow rate*

In the chart on page 3, the admissible flow rates for clamping and unclamping are specified. They only apply when using the accessory clamping arm with contact bolt. The swing clamps with a clamping stroke up to 15 mm thus have a clamping time of 1 second.

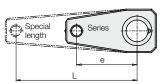
Longer special clamping arms are heavier and have a higher moment of inertia.

To avoid disengagement of the overload protection device, the flow rate must be reduced as per the following formula:

$$Q_{L} = Q_{e} * \sqrt{\frac{J_{e}}{J_{i}}} cm^{3}/s$$

Q₁ = Flow rate with special clamping arm

Q_e = Flow rate as per chart (page 3)

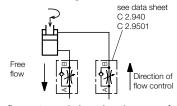

J_e = Moment of inertia of the clamping arm with contact bolt (see chart)

J₁ = Moment of inertia special clamping arm

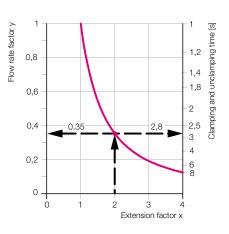
* Only for vertical mounting position!

Simplified calculation

The special clamping arm is only a prolonged version of the accessory clamping arm with contact bolt, as shown below:


By means of the opposite diagram, the admissible flow rate can be determined, as the following example shows:

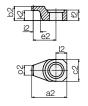
Swing clamp 1895 104


- 1. Extension factor $x = \frac{L}{e} = \frac{150 \text{ mm}}{75 \text{ mm}} = 2$
- 2. Flow rate factor as per diagram → y = 0.35
- 3. Max. flow rate $Q_L = y * Q_{adm} = 0.35 * 10 \text{ cm}^3/\text{s} = 3.5 \text{ cm}^3/\text{s}$
- 4. Min. clamping time as per diagram → approx. 2.8 s

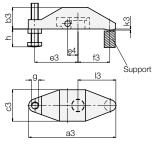
Throttling of the flow rate

A flow rate throttling always has to be effected in the supply line to the swing clamp. This avoids a pressure intensification and thereby pressures exceeding 500 bar.

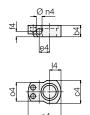
Adm. flow rate and clamping time as a function of the clamping arm extension


Accessory - Clamping Arm Clamping arm assembly • Double clamping arm • Flanged nut • Wiper system

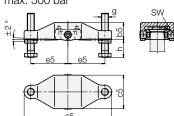
Clamping arm short 42CrMo4, max. 500 bar


Cranked clamping arm

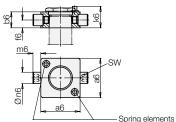
42CrMo4, max. 300 bar


Clamping arm assembly complete with carrier

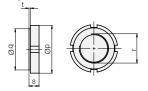
GGG 40, max. 500 bar


Carrier for clamping arm assembly

42CrMo4


Double clamping arm complete with carrier

GGG 40, max. 500 bar



Carrier for double clamping arm

42CrMo4

Flanged nut

Swing clamps		18X3	18X5	18X6	18X7
a1	[mm]	41	61	76	90
a2	[mm]	51.5	76	100	123
a3	[mm]	122	185	_	_
a4	[mm]	46	59	82	90
a5	[mm]	138	196	216	236
a6 ±0.1	[mm]	43	55	63	77
b1	[mm]	16	23	28	34
b2	[mm]	21	28	34	40
b3	[mm]	30	45	-	_
b4	[mm]	16	23	28	34
b5	[mm]	28.5	38	47	56
b6	[mm]	16	23	28	34
c1	[mm]	32	48	60	78
c2	[mm]	32	46	66	75
c3	[mm]	44	58.5	-	-
c4		32	40	58	68
	[mm]	59			105
c5	[mm]		75	85	
e1	[mm]	25	37	45	52
e2	[mm]	33.5	50	64	82.5
e3	[mm]	60	83	_	_
e4	[mm]	14.5	21	28	33
e5	[mm]	60	83	92	100
f1	[mm]	6	6	11	14
f2	[mm]	15.5	22.5	28	34
f3	[mm]	45	75	_	_
f4	[mm]	7.5	13	17	21
f6	[mm]	7.5	11	15	17
g	[mm]	M10	M16	M16	M20
h min max	[mm]	1064	1579	1579	1998
i2	[mm]	7	7	7	8
k2	[mm]	14.5	19	23	27
k3	[mm]	1.5	2	_	_
k6 **	[mm]	21.5	29	35	41
12	[mm]	16	23	33	37.5
13	[mm]	53	87	-	-
14	[mm]	16	22	34	36
m6	[mm]	9	11	12	15
Øn4 H7	[mm]	8	10	12	14
Øn6 g6	[mm]	10	16	18	20
o2	[mm]	14	25	39	39
04	[mm]	26	32	44.5	56
		68	90	115	130
Øp	[mm]	52	68	90	
Øq-0.2	[mm]				100
r	[mm]	M45x1.5	M60x1.5	M80x2	M90x2
S	[mm]	12	13	16	16
t	[mm]	3	4	5	5
SW	[mm]	5	8	8	8
Part no.		0540:	0540.05	05/000	
Clamping arm short		3548 159	3548 165	3548304	3548 163
Weight, approx.	[kg]	0.05	0.23	0.5	0.88
Cranked clamping arm		3548 238	3548 236	3548 301	3548302
Weight, approx. [kg]		0.11	0.3	0.84	1.3
Clamping arm assembly co	-	0354 000	0354002		
Weight, approx.	[kg]	0.66	1.7		
Carrier for clamping arm as	sembly	3542093	3542094	3542 132	3542 096

Clamping arm short		3340 139	3346 103	3340304	3340 103
Weight, approx.	[kg]	0.05	0.23	0.5	0.88
Cranked clamping arm		3548 238	3548 236	3548 301	3548302
Weight, approx.	[kg]	0.11	0.3	0.84	1.3
Clamping arm assembly co	mplete	0354000	0354002		
Weight, approx.	[kg]	0.66	1.7		
Carrier for clamping arm as	sembly	3542093	3542094	3542 132	3542096
Weight, approx.	[kg]	0.08	0.18	0.5	0.7
Double clamping arm		0354131	0354 132	0354 133	0354 134
Weight, approx.	[kg]	0.9	2	3	5.3
Carrier for double clamping	ı arm*	0354141	0354142	0354 143	0354 144
Weight, approx.	[kg]	0.21	0.46	0.67	1.4
Flanged nut		3527020	3527021	3527049	3527 022
Max. tightening torque	[Nm]	250	500	1100	1400
Weight, approx.	[kg]	0.15	0.25	0.4	0.6

^{*)} complete with threaded bolt and spring elements
**) Height stop surface for spring elements

Wiper system

The standard FKM wiper has a high chemical resistance against most cooling and cutting

The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf.

It consists of a radially floating wiping disk and a retaining disk.

The metallic wiper can be delivered already mounted ("M") for double-acting swing clamps or as an accessory for retrofitting (see page 3).

Attention!

The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection effect.

If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk.

Swing Clamps with Reinforced Swing Mechanism

bottom flange, position monitoring optional, double acting, max. operating pressure 500 bar

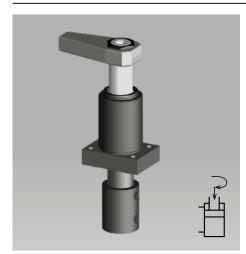


Figure with position monitoring

Application

Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading. Due to the sturdy swing mechanism and the extended switch rod they are particularly suited for

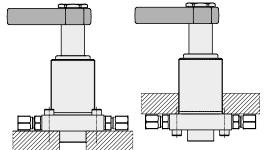
- Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Test systems for motors, gears, axes, etc.
- Automatic manufacturing systems
- Assembly lines

Description

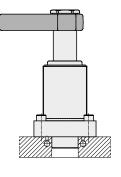
This line is a further development of the proved ROEMHELD swing clamps with the aim to improve process safety in linked clamping systems. The most important data are as follows:

- 1. Omission of the overload protection device In the case of a slight collision with the clamping arm during loading and unloading of the fixture, the angular position of the clamping arm will be maintained. Less critical are the weight of the clamping arm or an increased swing speed.
- 2. Reinforced swing mechanism

The reinforced swing mechanism endures a collision of the clamping arm with the workpiece during clamping up to a pressure of 100 bar.


3. FKM wiper

This wiper has a high chemical resistance when using aggressive cutting fluids


4. Further types of bodies Flange at the top: data sheet B 1.8801 Threaded-body type: data sheet B 1.8921

Connecting possibilities

Pipe thread

Drilled channels

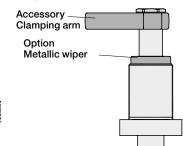
Part numbers

Without switch rod, without metallic wiper: Without switch rod, with metallic wiper: With switch rod, without metallic wiper: With switch rod, with metallic wiper:

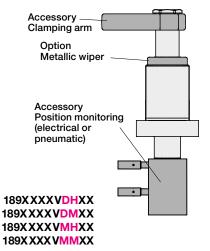
Options

Switch rod for position monitoring

The helix rod protrudes through the cover and allows thereby a pneumatic or electrical control of the piston position outside the swarf area. As an accessory a pneumatic position monitoring is available; the brass control slide being displaced in a stainless housing. The slide opens and closes bore holes, so that a pressure switch or a differential pressure switch can signal the position "Clamped" and "Unclamped".


It is also possible to realise this monitoring directly in the fixture body by means of drilled channels. An electrical position monitoring with inductive proximity switches is also available (see page 2).

Metallic wiper

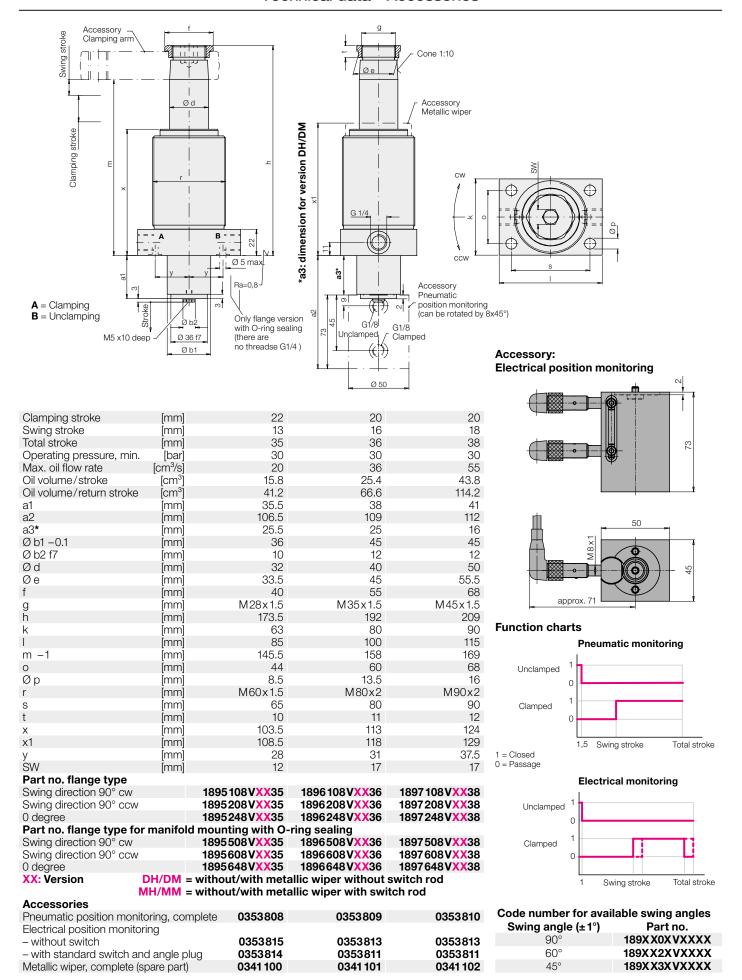

This wiper protects the FKM wiper against mechanical damage, e.g. by hot swarf. The swing clamp body is prepared for mounting of the metallic wiper. The wiper consists of a radially floating wiping disk and a retaining disk which will be pressed onto the existing collar.

Versions

DH, DM: without switch rod

MH, MM: with switch rod

Important notes


Due to the missing overload protection device, assembly and disassembly of the clamping arm has to be made carefully despite the reinforced swing mechanism. When tightening and untightening the fixing nut, the clamping arm or the hexagon socket in the piston has to be backed up. It is recommended to effect tightening and untightening in the swivel area. Frequent collisions with the clamping arm in radial direction have to be avoided.

For interpretation of the pneumatic pressure we recommend to use a differential switch.

Parallel connection for up to 8 swing clamps is possible. For a greater number there are special solutions. Please contact us.

Further important notes see data sheet B 1.881.

Dimensions Technical data • Accessories

Clamping force diagrams and other accessories: see data sheet B 1.881. Further proximity switches: see data sheet B 1.552.

Double clamping arm

provided by customer

Swing Clamps with Reinforced Swing Mechanism

bottom flange, position monitoring optional, pendulum eye/fork head, max. operating pressure 500/160 bar

Advantages

- Introduction of clamping force without side loads
- Compact design
- Double clamping arm facilitates multiple clamping of similar workpieces
- Pendulum eye for high clamping forces
- Fork head for simple clamping arms
- Alternatively pipe thread or drilled channels
- Reinforced swing mechanism
- FKM wiper standard
- Available with position monitoring

Connecting possibilities

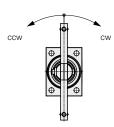
- Pipe thread
- Drilled channels

Function

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

The version with pendulum eye or fork head allows simultaneous clamping of two workpieces with half clamping force.


Function

The hydraulic swing clamp is a double-acting pull-type cylinder where a part of the total stroke is used to swing the piston.

Direction of rotation

The swing clamps are available with clockwise or counterclockwise swing motion.

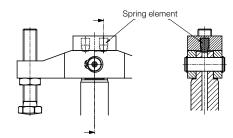
Off-position is the extended piston position.

Process safety

To improve the process safety when using heavy double clamping arms the swing mechanism has been reinforced and an overload protection device has not been realised. During clamping the reinforced swing mechanism

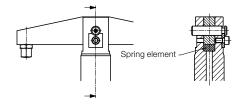
During clamping the reinforced swing mechanism endures a collision of the clamping arm with the workpiece up to a pressure of 100 bar. All versions are also available with a switch rod at the cylinder bottom. The control cams are mounted at this rod to control the clamping and unclamping position with limit switches or pneumatically.

Adaptable position monitorings for inductive or pneumatic control are available as accessory (page 4).


Description

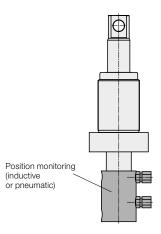
The piston end of this swing clamp is designed as pendulum eye or fork head. By means of a double clamping arm 2 workpieces can be clamped at the same time.

For both versions a springy element is required in order to maintain the double clamping arm in the unclamped position in horizontal position.


Pendulum eye

The sturdy pendulum eye can transmit high clamping forces up to a max. operating pressure of 500 bar. The double clamping arm has to be dimensioned according to the load.

Fork head


The fork head allows a max. operating pressure of 160 bar. Advantageous is the fact that relatively simple clamping arms can be manufactured from flat materials.

Option: metal wiper

The optionally availabe metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarfs.

Swing clamp with optional position monitoring (accessory)

Important notes

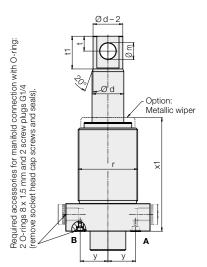
Danger of injury

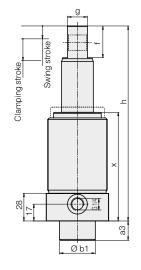
Hydraulic clamping elements generate high clamping forces. Considerable injuries can be caused to fingers in the effective area of the double clamping arm.

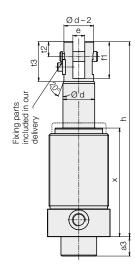
Remedy: mount protection devices.

Operating conditions, tolerances and other data see data sheet A 0.100.

Clamping arm

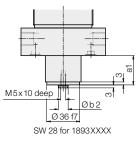

Due to the missing overload protection device a collision with the clamping arm during loading and unloading of the fixture must be avoided. Remedy: mount position adaptor.


The double clamping arm in clamping position should preferably be at right angles to the piston axis to avoid overload of the spring element. Both contact bolts must only contact the work-piece after completion of the swing stroke.

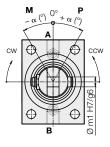

Please consider: For a newly designed double clamping arm, the moment of inertia must be determined to calculate the admissible flow rate using the formula on page 3.

Pendulum eye 189X 137X (500 bar) without switch rod

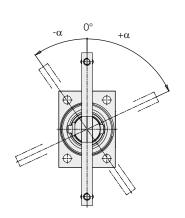
Fork head 189X 157X (160 bar)

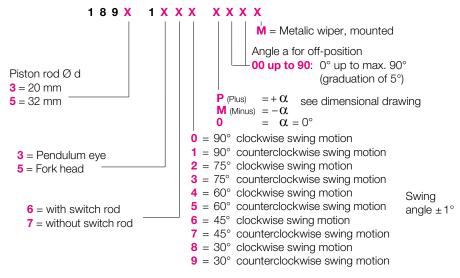


Off-position


Off-position

With switch rod 189X1X6X


В Øp



Part no.

Off-position (unclamped extended position)

The fixing of the clamping arm with pendulum eye or fork head does not allow an adjustment of the off-position as possible in case of cone fixation. Therefore the desired off-position has to be indicated when placing the order. The angle α can be selected in steps of 5°.

A = Clamping **B** = Unclamping

1. Example of ordering

Piston rod diameter = 20 mm, pendulum eve. without switch rod, swing angle 90° clockwise, off-position 0°, metallic wiper mounted

Part no.: 18931370000M

2. Example of ordering

Piston rod diameter = 32 mm, fork head, with switch rod, swing angle 60° counterclockwise, off-position -30°, metallic wiper mounted

Part no.: 18951565M30M

Technical data

		1893	1895
Clamping stroke	[mm]	25	22
Swing stroke	[mm]	9	13
Total stroke	[mm]	34	35
Operating pressure, min.	[bar]	30	30
Adm. flow rate	[cm ³ /s]	8	20
for moment of inertia	[kgm²]	0.00032	0.002295
Effective piston area			
Clamping	[cm ²]	1.76	4.52
Unclamping	[cm ²]	4.9	12.56
Oil volume/stroke	[cm ³]	6	15.8
Oil to return	[cm ³]	16.7	44
a1	[mm]	10	29.5
a3	[mm]	-	19.5
Ø b1 -0.1	[mm]	-	36
Ø b2 f7	[mm]	10	10
Ød	[mm]	20	32
e +0.1	[mm]	8	12
f	[mm]	20	32
f1	[mm]	26	37
g f7	[mm]	12	20
h	[mm]	188.5	196.5
k	[mm]	45	63
I	[mm]	90	85
Ø m H7	[mm]	10	16
Ø m1 H7	[mm]	6	10
0	[mm]	30	44
Øp	[mm]	6.5	9
r	[mm]	M45x1.5	M60x1.5
S	[mm]	50	65
t	[mm]	9	15
t1	[mm]	21	33
t2	[mm]	10	15
t3	[mm]	29	40
X	[mm]	115.5	109.5
x1	[mm]	120.5	114.5
у	[mm]	29.5	28
Accessories			
Metallic wiper, complete (custome	er assembly)	0341 107	0341 100
O-Ring 8x 1.5		3000343	3000 343
Screw plug G 1/4		3610264	3610264

Admissible flow rate

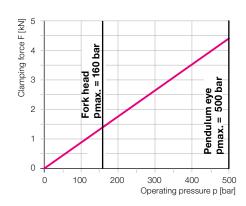
The admissible flow rate indicated in the chart applies to the use of double clamping arms whose moment of inertia does not exceed the chart value.

The clamping time is thus approx. 0.8 seconds and the unclamping time approx. 2 seconds. For new clamping arms with a different moment of inertia, the admissible flow rate can be calculated using the following formula:

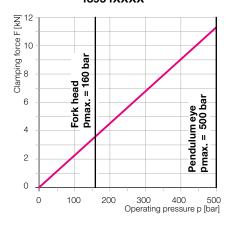
$$Q_2 = Q_1 x \sqrt{\frac{J_1}{J_2}}$$
 [cm³/s]

 $Q_1 = Adm.$ flow rate (chart value)

Q₂ = Adm. flow rate with the moment of inertia of the new clamping arm J2


 $J_1 = Moment of inertia (chart value)$

 J_2 = Moment of inertia of the new clamping arm


Clamping force F as a function of the operating pressure p

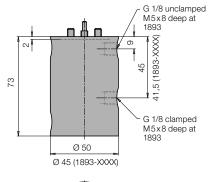
18931XXXX

18951XXXX

Accessory - Position Monitorings

Delivery

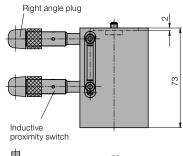
The position monitorings are not delivered mounted at the swing clamp.

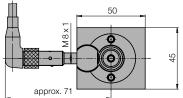

Fixing screws and signal sleeve are included in the delivery.

Electrical position monitorings are delivered with 2 inductive proximity switches and 2 right angle plugs.

The housings can be mounted rotated by $2 \times 180^{\circ}$ (1893) or $8 \times 45^{\circ}$.

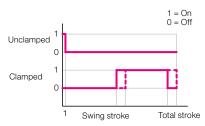
Position monitoring


Pneumatic position monitoring



Part no.	0353867	0353808
	for 1893	for 1895

Electrical position monitoring



Part no.	0353868	0353814
	for 1893	for 1895

Function chart

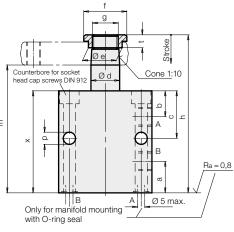
Function chart

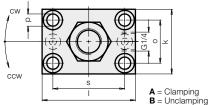
Technical data for proximity switches

Voltage	1030 V DC
Residual ripple max.	15 %
Constant current max.	200 mA
Switching function	interlock
Output	PNP
Body material	stainless steel
Code class	IP 67
Environmental temperature	-25+70°C
Connection	Plug
Length of cable	5 m
LED function display	Yes
Protected against short circuit	ts Yes

Swing Clamps with Overload Protection Device

block type, double acting, max. operating pressure 500 bar


Overload protection device


An integrated mechanical overload protection device prevents damage to the swivel mechanism when striking an object within 90° rotation, clamping or unclamping alike.

Important notes

For manifold mounting without ports G 1/4 and the both cross holes \varnothing p.

Operating conditions, tolerances and other data see data sheet A 0.100.

Application

These swing clamps are used when it is required to keep the fixture workpiece area free of straps and clamping components for unrestricted workpiece loading and unloading.

Function

This hydraulic clamping element is a pull-type cylinder, where a part of the total stroke is used to swing the piston (swing stroke).

The larger part of the stroke is available as clamping stroke.

Versions

The units are available in three standard sizes, optionally with clockwise or counterclockwise swing motion, and for each size three versions of standard clamping arms are available (see accessories, page 2).

Mounting of these clamping arms at any angle with 360°.

Standard swing angles of rotation are 45°, 60°, and 90° \pm 2°. Other variants, as e.g. versions with metallic wiper on request.

All units are equipped with piston rod wipers.

These double-acting swing clamps are also available in versions with minimum leakage rate. Please contact us!

Danger of injury

Hydraulic clamping elements can generate considerable forces.

Due to the 90° swing motion, the exact clamping and unclamping position cannot be determined in advance. Considerable injuries can be caused by squashing one's fingers in the effective area of the clamping arm.

Remedy: protection device with electrical locking.

Materials

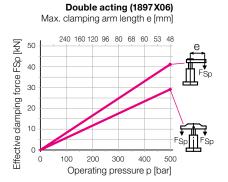
By nitrating piston and housing, wear is reduced and protection against corrosion increased. Piston material and cylinder body: High alloy steel.


Total stroke	[mm]	14	16	20
Swing stroke	[mm]	7	8	9
Clamping stroke	[mm]	7	8	11
Operating pressure	[bar]	30	30	30
Max. oil flow rate*	[cm ³ /s]	3.2	10	27.7
Oil volume / stroke	[cm ³]	2.5	7.3	23
Oil volume / return stroke	[cm ³]	6.8	20	62
a	[mm]	22	25	26
b	[mm]	18	24	30
С	[mm]	33	40	50
Ød	[mm]	20	32	50
Ø e	[mm]	23.5	33.5	55.5
f	[mm]	30	40	68
9	[mm]	M18x1.5	M28x1.5	M45 x 1.5
h iner	[mm]	110	139	174
h k FKM wiper I standard	[mm]	45	63	95
etandaru	[mm]	65	85	125
m	[mm]	89	111	134
0	[mm]	30	40	65
р	[mm]	8.5	10.5	17
S	[mm]	50	63	95
t	[mm]	9	10	12
X	[mm]	71	91	110
Weight	[kg]	1.5	3.4	7.2
Swing direction cw	Part no.	1893106	1895106	1897106
Swing direction ccw	Part no.	1893206	1895206	1897206
0-degree	Part no.	1893246	1895246	1897246
Type for manifold mounting with				
Swing direction cw	Part no.	1893506	1895506	1897506
Swing direction ccw	Part no.	1893606	1895606	1897606
0-degree	Part no.	1893646	1895646	1897646
Spare O-ring 8x1.5	Part no.	3000343		

Code numbers for available swing angles Swing angle Part no. 90° 189X X06 60° 189X X26 45° 189X X36

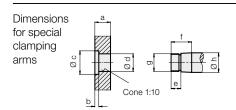
*The max. oil flow rate is valid for vertical mounting position in connection with standard clamping arms. In the case that other mounting positions and/or other clamping arms are used, the oil flow rate has to be reduced as necessary. A possibly required flow control has to be made by flow control valves in the clamping line as well as in the unclamping line (stroke/return stroke).

Effective clamping force $F_{\mbox{\scriptsize Sp}}$ as a function of max. operating pressure p



Operating pressure p [bar]

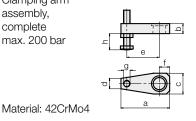
500


400

Double acting (1895 X06)

Example: 1895 106 An operating pressure p of 200 bar in connection with standard clamping arm 0354 003 of arm lenght L = 75 mm results in an effective clamping force FSp of 7 kN.

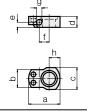
100 200 300


Operating pressure p [bar]

200 300

Swing clamp	а	b	Øс	Qd^{+0}	.10 .05 e	f	g	$Øh_{f7}$	
1893XX6	16	4	24	19.8	10	21	M 18x 1.5	20	
1895XX6	23	5	34	31.8	12	28	M 28 x 1.5	32	
1897 XX6	34	6	56	49.8	13	40	M 45 x 1.5	50	

Effective clamping force F_{Sp} [kN]



	Swing clamp	а	b	С	d	е	f	g	h max.	h min.	Weight [kg]	Part no.
ğ	1893XX6	75	16	32	16	50	16	M10	64	6	0.2	0354001
read	1895XX6	115	23	48	22	75	25	M16	79	9	0.7	0354003
	1897 XX6	178	34	78	40	120	40	M20	98	12	2.55	0354005
	Swing clamp	а	b	С	d		f				Weight [kg]	Part no.
ad	1893XX6	75	16	32	16		16				0.18	3921016
ĕ	1895XX6	115	23	48	22		25				0.65	3921017
5	1897 XX6	178	34	78	40		40				2.3	3921018

Clamping strap assembly, complete, with carrier, max. 500 bar Material: GGG-40

Swing clamp	а	b	С	d	е	f	g	h max.	h min.	i	k	Weight [kg]	Part no.
1893XX6	122	30	1.5	44	60	45	M10	64	6	53	14.5	0.57	0354000
1895XX6	185	45	2	58.5	83	75	M16	79	9	87	21	1.58	0354002

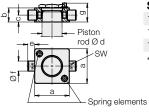
Carrier for special clamping strap

Swing clamp	а	b	С	d	е	f	g^{H7}	h	Weight [kg]	Part no.
1893XX6	46	26	32	16	7.5	14.5	8	16	0.08	3542093
1895 XX6	59	32	40	23	13	21	10	22	0.16	3542094
1897 XX6	90	56	68	34	21	33	14	36	0.65	3542096

Material: 42CrMo4

Doppelspanneisen, komplett, mit Träger, max. 500 bar

	SW -	
2	Piston rod Ø d	


Swing clamp	а	b	С	Ød	е	f min.	f max.	g	SW	Weight [kg]	Part no.
18X3XXX	138	59	28.5	20	60	10	64	M 10	5	0.83	0354131
18X5XXX	196	75	38	32	83	15	79	M 16	8	2.11	0354132
18X7XXX	236	105	56	50	100	19	98	M 20	8	5.24	0354134

Material: GGG-40

Double clamping arm assembly, complete, with carrier. max. 500 bar

Material:

42CrMo4

Swing clamp	a±0.1	b	С	Ød	е	Øfg6	g*	SW	Part no.
18X3XXX	43	16	7.5	20	9	10	21.5	5	0354141
18X5XXX	55	23	11	32	11	16	29	8	0354142
18X7XXX	77	34	17	50	15	20	41	8	0354144

^{*} Stop surface for spring elements

Swing Clamps with Overload Protection Device

threaded-body type, single and double acting, max. operating pressure 500 bar

Application

These hydraulic swing clamps are used when it is required to keep the fixture workpieces area free of straps and clamping components for unrestricted workpiece loading and unloading.

Description

This design allows the use of swing clamps even in restricted places. The threaded-body swing clamp can be sunk directly into the fixture up to the hexagon. Oil feed through two holes, allowing for 3 fitting and hose connections:

1. Individual connection

With only one swing clamp being used, both connections can be tapped directly.

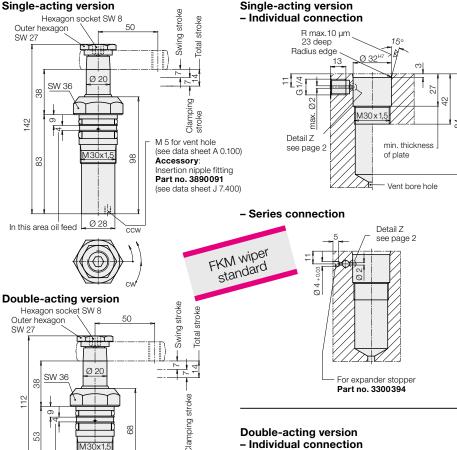
2. Series connection

If several swing clamps arranged in a row are required, the arrangement and size of holes shown below must be complied with. Instead of the expander stopper also, of course, an G 1/4 plug **(Part no. 3610006)** may be used.

3. Connecting housing

By means of the connecting housing available as an accessory, the swing clamps can be individually fixed with screws and piped (page 2)

Standard swing angles are 45°, 60°, and $90^{\circ}\pm2^{\circ}$. Mounting of the clamping arms can be made in any angular position.


All units are equipped with piston rod wipers and with an overload protection device which catches at every 180° angle. This is the initial position for the swing motion.

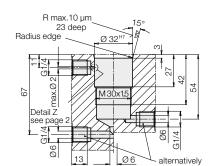
Important notes

Due to the screwed mounting, this initial position cannot be predetermined. Therefore, the clamping arm can only be fixed when the housing has been screwed in tight. The hexagon socket of the piston is used for counterholding when the clamping arm is tightened by means of the flanged nut.

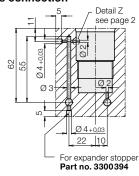
Operating conditions, tolerances and other data see data sheet A 0.100.

When using single-acting swing clamps, it is absolutely necessary to follow the instructions for venting of the spring area on data sheet G 0.110.

cw	
Effective piston area	1.01 cm ²
Piston area ratio	4 ,1
Swing stroke	7 mm
Clamping stroke	7 mm
Total stroke	14 mm
Oil volume / stroke	1.5 cm ³
Oil volume / return stroke	6 cm ³
Max. oil flo w rate*	1.5 cm ³ /s
Seating torque	60 Nm
Min. actuation	♦ 30 bar
pressure to swing	50 bar
Single acting	Part no.
Swing direction 90° cw **	1881 102
Swing direction 90° ccw**	1881 202
0-degree	1881 242
Double acting	Part no.
Swing direction 90° cw**	1891 101
Swing direction 90° ccw**	1891 201
0-degree	1891 241
Seal kit, external seals	0131530


valid for double-acting version

* Max. oil flow rate


In this area oil feed

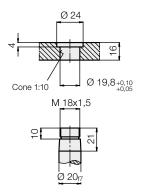
In case of the maximum oil flow rate as per chart the shortest possible clamping time is 1 second. If the flow rate of the pump divided by the number of swing clamps is higher than the indicated value in the chart, the flow rate has to be throttled to avoid any overload and thereby high wear. Throttling has to be made in the oil supply line to the swing clamp to rule out a possible pressure intensification. Use only flow control valves which allow oil return from the swing clamp without any impediments.

Mounting instructions, accessories and clamping force diagram see page 2

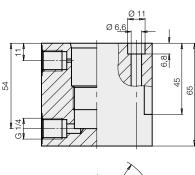
- Series connection

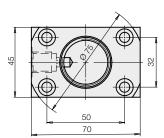
Code numbers for available swing angles										
** Swing angle	Part no.									
90°	18X1 X 0 X									
60°	18X1 X 2 X									
45°	18X1 X 3 X									

Mounting instructions Accessories

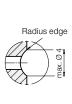

Mounting instructions

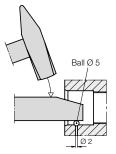
The screw-in thread must be cut with utmost care, especially in the area of the two joints. The round-off of the oil feed hole shown in detail "Z" is necessary or the lower O-ring will be damaged when screwed in. For this purpose there are two possibilities:


- By means of a diameter 6 spherical grinder and a hand drill, the thread is deburred according to detail "Z".
- 2. A diameter 5 steel ball is gauged with a light hammer blow as shown in the figure below.


A final check with a finger shows best whether the transitions are smooth and free of burrs.

Strap attachment dimensions



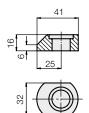

Connecting housing for double acting swing clamp Part no. 3467143

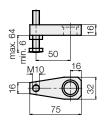
Detail "Z"

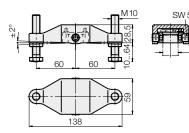
Clamping arm

Clamping arm, complete

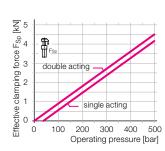
Clamping strap, complete

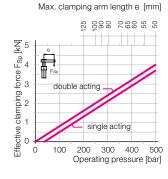

Double clamping arm assembly, complete

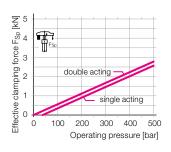



Weight [kg] 0.08
Part no. 3548159

Weight [kg] 0.2 **Part no. 0354001** Weight [kg] 0.18 **Part no. 3921016** (without thread M 10)

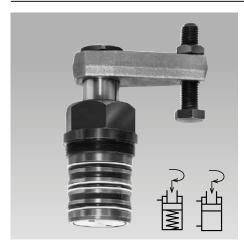

8 9 0 14.5 45 Support


Weight [kg] 0.57 Part no. 0354000




Weight [kg] 0.83 Part no. 0354131

Effective clamping force as a function of max. operating pressure p



Swing Clamps with Overload Protection Device

threaded-body type, single and double acting, max. operating pressure 500 bar

Application

Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestriced workpiece loading and unloading.

Clamping arms and strap type clamps are fastened to the piston rod by means of a taper shank and socket connection.

This hydraulic clamping element is a pull-type cylinder where a part of the total stroke is used to swing the piston.

Overload protection devise

An integrated mechanical overload protection device prevents damage to the swing mechanism when striking an object within the 90° rotation, clamping or unclamping alike, or in case of incorrect mounting of the clamping arm. Metallic wiper

Option metallic wiper

In addition to the FKM wiper all double-acting swing clamps can be equipped with a metallic wiper.

optional

Part no.: Add only letter "M" to the part number of the swing clamp without metallic wiper.

Example of ordering: Swing clamp 1893 101 with metallic wiper: 1893101M

Version

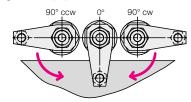
The units are available in three standard sizes. and for each size three versions of standard clamping arms are available (see accessories, page 4). Mounting of these clamping arms at any angle within 360°.

All units are equipped with piston rod wipers.

Materials

By nitrating piston and housing, wear is reduced and protection against corrosion increased.

Piston material: High alloy steel Cylinder body: Free-cutting steel


Important notes

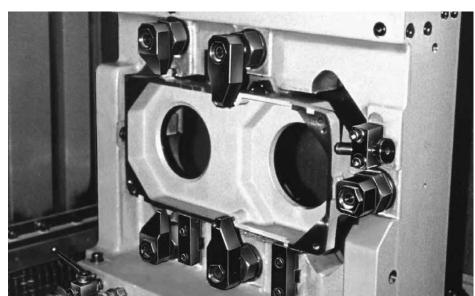
Operating conditions, tolerances and other data see data sheet A 0.100.

It is absolutely necessary to follow the instructions for venting of the spring area on data sheet G 0.110.

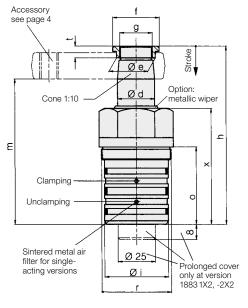
Swing direction

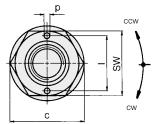
The units are available with clockwise and counterclockwise swing motion or without swing motion (0°).

Standard swing angles are 45°, 60°, and 90° \pm 2°.

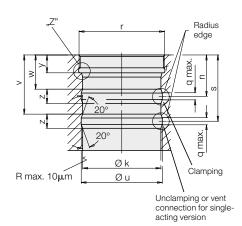

Special angles on request.

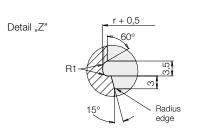
Other variants, as e.g. versions with metallic wiper on request.


0°-Version


Use as pure pull-type cylinder with a piston which is secured against torsion and which allows eccentric load as per clamping force diagram.

Application example


Dimensions Technical Data



Oil volume / stroke [cm³] 3.2 10.0 27.7 Oil volume / return stroke [cm³] 8.8 27.7 74.8 Total stroke [mm] 18 22 24 Swing stroke [mm] 7 8 9 Clamping stroke [mm] 14 15 11 30 30 30 Operating pressure to swing min. [bar] Max. oil flow rate* 3.2 10.0 [cm³/s] 27.7 64 [mm] 52 100 С Ød 20 32 50 [mm] Øe 23.5 33.5 55.5 [mm] 30 40 68 [mm] M 45 x 1.5 $M 18 \times 1.5$ $M28 \times 1.5$ g [mm] h [mm] 112 152 182 Øif7 [mm] 42 55 85 ØkH7 [mm] 42 55 85 1 [mm] 80 m [mm] 91-1 124-1 142-1 (145-1)0 n [mm] 24 29 41 [mm] 53 66 96 Ø p/deep 8/9 [mm] Ø q max. 5 5 6 [mm] M 45 x 1.5 M 60 x 1.5 M 90 x 2 [mm] s [mm] 41 46.5 64 t 9 12 [mm] 10 Øu 44 87 [mm] 57 37 41.5 59 ٧ [mm] 20 24 36 W [mm] 70 99 116 Х [mm] 10.5 12.5 20.5 У [mm] 8 10 10 Ζ [mm] SW 46 55 95 [mm]

Manifold mounting hole

Part no., single acting

Swing direction cw	1883102	1885 102	1887 102
Swing direction ccw	1883202	1885202	1887202
ĕ			
Part no., double acting			
Swing direction cw	1893101	1895 101	1897 101

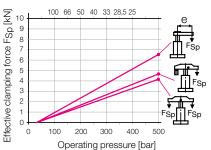
. a. c.i.o., acabic acting			
Swing direction cw	1893101	1895 101	1897 101
Swing direction ccw	1893201	1895201	1897201
Seal kit for external seals	0131 524	0131526	0131 528

Other swing angles

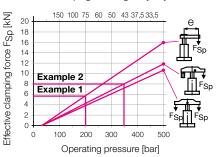
Swing angle	Part no.
90°	18XXX 0 X
60°	18XXX 2 X
45°	18XXX 3 X
O°	18XX1 4 X

◊ (145-1) for clamping arm 0354004

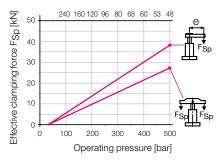
Option metallic wiper

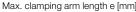

for double-acting swing clamps

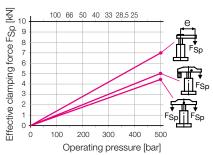
Partn no.: 189XXXXM


^{*} See page 3: Max. oil flow rate

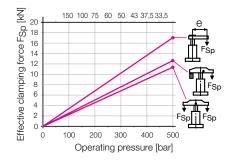
Effective clamping force F_{Sp} as function of operating pressure p

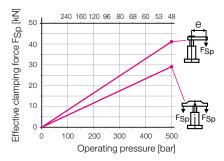

Single acting (1883XXX) Max. clamping arm length e [mm]


Single acting (1885XXX) Max. clamping arm length e [mm]



Size 3 Single acting (1887 XXX) Max. clamping arm length e [mm]


Double acting (1893XXX)


Double acting (1895XXX)

Max. clamping arm length e [mm]

Double acting (1897XXX)

Max. clamping arm length e [mm]

Note:

The clamping force of single-acting swing clamps is reduced by the opposite-directed spring return force.

For this reason the clamping force is slightly lower than that of double-acting swing clamps.

Example 1: 1885 102 single acting.

An operating pressure p of 200 bar in connection with standard clamping arm 0354003 of max. arm length L = 75 mm results in an effective clamping force F_{Sp} of 5.8 kN.

Example 2: 1885 102 single acting.

For a desired effective clamping force F_{So} of 8 kN and use of a swing clamp 1885 102 with a standard clamping strap 0354002 an operating pressure p of 345 bar is required.

Important notes

1. Danger of injury

Hydraulic clamping elements can generate considerable forces.

Due to the 90° swing motion, the exact clamping and unclamping position cannot be determined in advance. Considerable injuries can be caused to fingers in the effective area of the clamping arm.

Remedy: protection device with electrical locking.

3. Unimpeded swing motion

The swing motion must not be impeded and the clamping arm may only contact the workpiece after completion of the swing stroke.

4. Clamping arm assembly

In case of this threaded-body type the clamping arm can only be fixed, after firm screwing in of the housing, since the final position cannot

When tightening and untightening the fixing screw, the clamping arm has to be backed up to avoid the introduction of moments to the piston rod.

be determined in advance.

5. Adjustment of contact bolt

The contact bolt may only contact the workpiece after completion of the swing motion. When tightening and untightening the fixing screw, the clamping arm has to be backed up (see 4.).

6. Special clamping arms

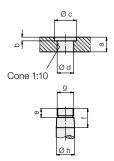
When using special clamping arms with other lengths, the corresponding operating pressures as shown in the clamping force diagram must not be exceeded. If longer clamping arms will be used, not only the operating pressure but also the flow rate have to be reduced (see 2.).

7. Venting of spring area

The spring area of single-acting swing clamps has to be vented to avoid problems in functioning. A sintered metal air filter avoids penetration of contaminations. If there is a possibility that cutting lubricants and coolants penetrate through the sintered metal air filter into the cylinder's interior, a vent hose has to be connected and be placed in a protected position (see data sheet G 0.110).

8. Bleeding

Air in the oil prolongs the clamping time considerably and leads to function problems.


Therefore bleeding has to be effected during start up. The threaded-body swing clamp has no possibility for bleeding at the element itself. Remedy: plug the oil channels in the fixture body at the end. If required, loosen the plugs carefully and pump at low oil pressure until bubblefree oil comes out. Retighten the plugs.

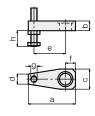
2. Maximum oil flow rate

In case of the maximum oil flow rate as per chart the shortest possible clamping time is 1 second. If the flow rate of the pump divided by the number of swing clamps is higher than the indicated value in the chart, the flow rate has to be throttled to avoid snapping out of the overload protection device. In the case that the mounting position is not vertical and/or heavy clamping arms are used, the flow rate has to be further reduced, if required. Throttling has to be made in the oil supply line to the swing clamp to rule out a possible pressure intensification. Use only flow control check valves which allow oil return from the swing clamps without any impediments, as e.g. the flow-control swivel banjo coupling 9208 129 on page C 2.9501. During unclamping the maximum oil flow rate can be 2.8 higher than the indicated value in the chart, because the piston area is correspondingly bigger.

Accessories

Dimensions for special clamping arms

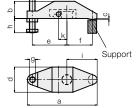
Swing clamp	а	b	Øс	$Ød_{+0}^{+0}$	¹⁰ e	f	g	$Øh^{f7}$	
18X3XXX	16	4	24	19.8	10	21 M	18 x 1,5	20	
18X5XXX	23	5	34	31.8	12	28 M	28 x 1,5	32	
18X7XXX	34	6	56	49.8	13	40 M	45 x 1,5	50	


Clamping arm, max. 300 bar

Swing clamp	а	b	С	d	е	f	g	h	i	Weight [kg]	Part no.
18X3XXX	51.5	21	32	14	33.5	16	15.5	14.5	7	0.11	3548238
18X5XXX	76	28	46	25	50	23	22.5	19	7	0.30	3548236
18X7XXX	123	40	75	39	82.5	37.5	34	27	8	1.30	3548302

Material: 42CrMo4

Clamping arm assembly, complete, max. 200 bar



	Swing clamp	а	b	С	d	е	f	g	h max.	h min.	Weight [kg]	Part no.
ď	18X3XXX	75	16	32	16	50	16	M10	64	6	0.2	0354001
£ §	18X3XXX 18X5XXX 18X7XXX	115	23	48	22	75	25	M16	79	9	0.7	0354003
₹	18X7XXX	178	34	78	40	120	40	M20	98	12	2.55	0354005

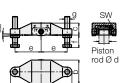
Weight [kg] Swing clamp а Part no. ### 18X3XXX 18X5XXX 18X7XXX 32 3921016 75 16 16 16 0.18 115 23 48 22 25 0.65 3921017 178 34 78 40 40 2.3 3921018

Material: 42CrMo4

Clamping strap assembly, complete, with carrier, max. 500 bar

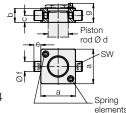
Swing clamp	а	b	С	d	е	f	g	h max. h	min.	i	k	Weight [kg]	Part no.
18X3XXX	122	30	1.5	44	60	45	M10	64	6	53	14.5	0.57	0354000
18X5XXX	185	45	2	58.5	83	75	M16	79	9	87	21	1.58	0354002

Material: GGG-40


Carrier for special clamping strap

Swing clamp	а	b	С	d	е	f	g^{H7}	h	Weight [kg]	Part no.
18X3XXX	46	26	32	16	7.5	14.5	8	16	0.08	3542093
18X5XXX	59	32	40	23	13	21	10	22	0.16	3542094
18X7XXX	90	56	68	34	21	33	14	36	0.65	3542096

Material: 42CrMo4


Double clamping arm assembly, complete, with carrier, max. 500 bar

Swing clamp	а	b	С	Ød	е	f min.	f max.	g	SW	Weight [kg]	Part no.
18X3XXX	138	59	28.5	20	60	10	64	M 10	5	0.83	0354131
18X5XXX	196	75	38	32	83	15	79	M 16	8	2.11	0354132
18X7XXX	236	105	56	50	100	19	98	M20	8	5 24	0354134

Material: GGG-40

Carrier, complete with threaded bolt and spring clamping elements

Swing clamp	$a^{\pm 0,1}$	b	С	Ød	е	Øfg6	g *	SW	Part no.
18X3XXX	43	16	7.5	20	9	10	21.5	5	0354141
18X5XXX	55	23	11	32	11	16	29	8	0354142
18X7XXX	77	34	17	50	15	20	41	8	0354144

^{*} Stop surface for spring elements

Material: 42CrMo4

Swing Clamps with Reinforced Swing Mechanism

threaded-body type, position monitoring optional, double acting, max. operating pressure 500 bar

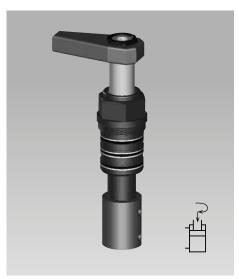
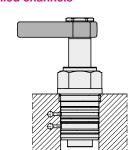


Figure with position monitoring

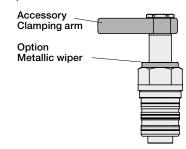
Application

Hydraulic swing clamps are used for clamping of workpieces when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading. Due to the sturdy swing mechanism and the extended switch rod they are particularly suited for

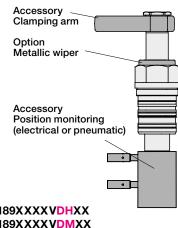

- Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Test systems for motors, gears, axes, etc.
- Automatic manufacturing systems
- Assembly lines

Description

This line is a further development of the proved ROEMHELD swing clamps with the aim to improve process safety in linked clamping systems. The most important data are as follows:


- 1. Omission of the overload protection device In the case of a slight collision with the clamping arm during loading and unloading of the fixture, the angular position of the clamping arm will be maintained. Less critical are the weight of the clamping arm or an increased swing speed.
- 2. Reinforced swing mechanism The reinforced swing mechanism endures a collision of the clamping arm with the workpiece during clamping up to a pressure of 100 bar.
- 3. FKM wiper This wiper has a high chemical resistance when using aggressive cutting fluids
- 4. Further types of bodies Flange at the bottom: data sheet B 1.8811 Flange at the top: data sheet B 1.8801

Connecting possibility **Drilled channels**



Ausführungen

DH, DM: without switch rod

MH, MM: with switch rod

189XXXXVDMXX 189XXXXVMHXX 189XXXXVMMXX

Part numbers

Without switch rod, without metallic wiper: 189XXXXVDHXX Without switch rod, with metallic wiper: With switch rod, without metallic wiper: With switch rod, with metallic wiper:

Options

Switch rod for position monitoring

The helix rod protrudes through the cover and allows thereby a pneumatic or electrical monitoring of the piston position outside the swarf area. As an accessory a pneumatic position monitoring is available; the brass control slide being displaced in a stainless housing.

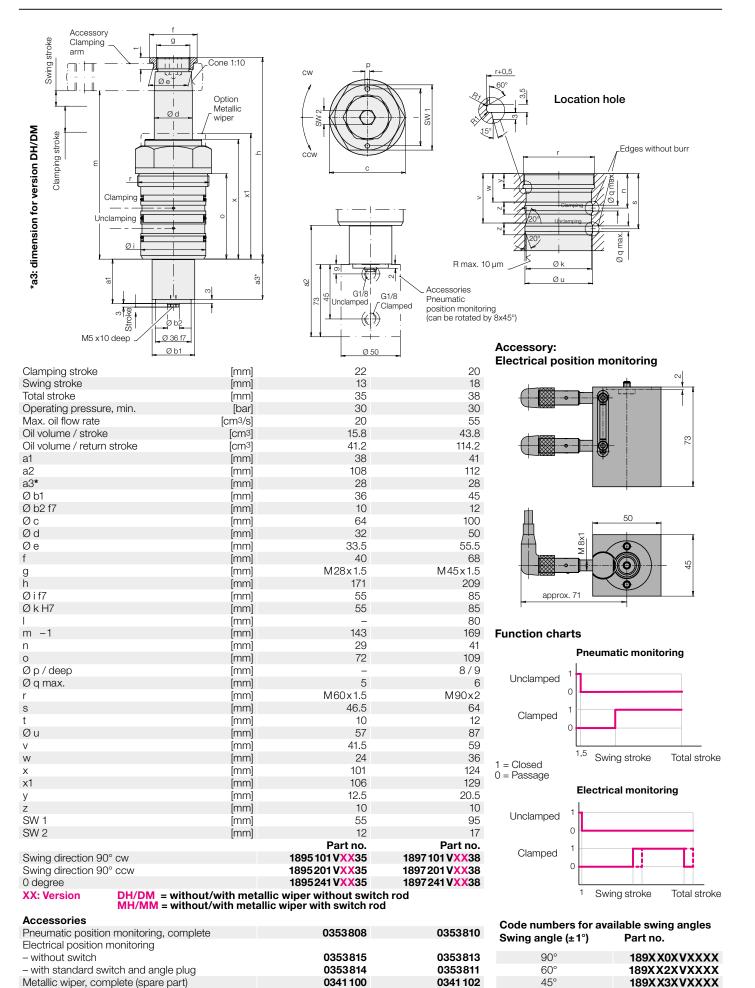
The slide opens and closes bore holes, so that a pressure switch or a differential pressure switch can signal the position "Clamped" and "Unclamped". It is also possible to realise this monitoring directly in the fixture body by means of drilled channels. An electrical position monitoring with inductive proximity switches is also available (see page 2).

Metallic wiper

This wiper protects the FKM wiper against mechanical damage, e.g. by hot swarf.

The swing clamp body is prepared for mounting of the metallic wiper. The wiper consists of a radially floating wiping disk and a retaining disk which will be pressed onto the existing collar.

Important notes


Due to the missing overload protection device, assembly and disassembly of the clamping arm has to be made carefully despite the reinforced swing mechanism. When tightening and untightening the fixing nut, the clamping arm or the hexagon socket in the piston has to be backed up. It is recommended to effect tightening and untightening in the swivel area. Frequent collisions with the clamping arm in radial direction have to be avoided.

For interpretation of the pneumatic pressure we recommend to use a differential switch.

Parallel connection for up to 8 swing clamps is possible. For a greater number there are special solutions. Please contact us.

Further important notes see data sheet B 1.892.

Dimensions Technical data • Accessories

Clamping force diagrams and other accessories see data sheet B 1.892. Further proximity switches see data sheet B 1.552.

Off-position extended - contact by spring force, single acting, max. operating pressure 500 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also deflection and vibration under machining loads.

Description

The spring-loaded support plunger positions itself against the workpiece with a light spring force.

Hydraulic locking is made together with hydraulic clamping of the workpiece, or independently. The support plunger is provided with female thread to enable the use of threaded pieces for height adjustment. Oil supply can alternatively be effected from the side or from below. The internal part of the work support is protected against dust and swarf by a sintered metal air filter.

Spring force $10 - 90 \, \text{N}$, adjustable depending on the stroke.

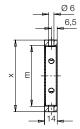
Important notes!

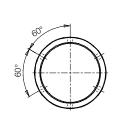
If there is any danger of fluids being sucked into the filter, a vent hose has to be connected. Spring force should not be used to lift workpiec-

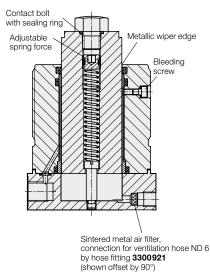
Contact bolts and extensions with large weight can influence the functions of this component. Work supports are not suitable to compensate side loads.

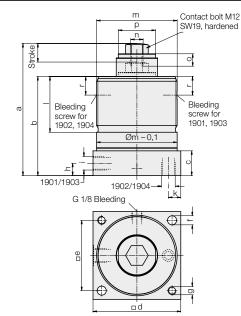
Work supports must only be operated with a sealed contact bolt.

In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf holdup in the area of the metallic wiper edge.

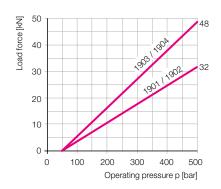

Remedy: Regular cleaning.

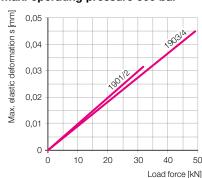

Operating conditions, tolerances and other data


see data sheet A 0.100.


Accessory

Capstan nut




Connection		at the side	at the bottom	at the side	at the bottom
Bolt Ø	[mm]	32	32	40	40
Stroke +0.8	[mm]	16	16	18	18
Adm. load force	[kN]	32	32	48	48
Recom. mini. pressure	[bar]	100	100	100	100
a +1.4 -1.2	[mm]	122	122	127.8	127.8
b	[mm]	90	90	96	96
С	[mm]	24	24	24	24
d	[mm]	75	75	85	85
е	[mm]	57	57	68	68
Øf	[mm]	7	7	8.8	8.8
g	[mm]	M 6	M 6	M 8	M 8
h	[mm]	12	-	12	_
i		G 1/4	G 1/4	G 1/4	G 1/4
k	[mm]	-	12	-	12
1	[mm]	40	40	54	54
m	[mm]	M 68 x 2	M 68 x 2	M 78 x 2	M 78 x 2
n	[mm]	M 12	M 12	M 12	M 12
0	[mm]	12	12	12	12
p	[mm]	27	27	36	36
r	[mm]	20	20	18	18
X	[mm]	Ø 80	Ø 80	Ø 90	Ø 90
Weight, approx.	[kg]	2.75	2.75	3.8	3.8
Part no.		1901 002	1902002	1903002	1904002
Accessory Capstan nut		3522008	3522008	3522007	3522007

Article available on request

Admissible load F as a function of the operating pressure p

Max. elastic deformations s as a function of support force F max. operating pressure 500 bar

Extending hydraulically - contact by spring force, single acting with spring return, max. operating pressure 500 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also deflection and vibration under machining loads.

Description

The support plunger is retracted in off-position. When pressurised, the support plunger moves against the inserted workpiece by means of spring force. With increasing oil pressure, the support plunger locks hydraulically. After the system has been unclamped, the support plunger returns to the off-position.

The support plunger is provided with female thread to enable the use of threaded pieces for height adjustment.

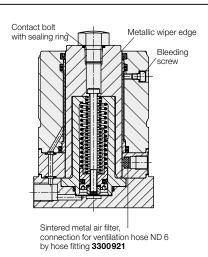
Oil supply can alternatively be effected from the side or from below.

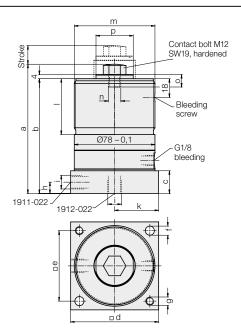
The internal part of the work support is protected against dust and swarf by a sintered metal air filter.

Important notes

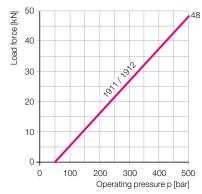
If there is any danger of fluids being sucked into the filter, a vent hose has to be connected.

Spring force should not be used to lift workpieces.

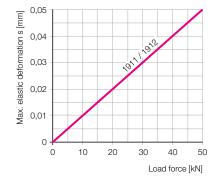

Contact bolts and extensions with large weight can influence the functions of this component. Work supports are not suitable to compensate side loads.


Work supports must only be operated with a sealed contact bolt.

In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf holdup in the area of the metallic wiper edge.

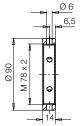

Remedy: Regular cleaning.

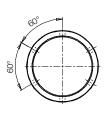
Operating conditions, tolerances and other data see data sheet A 0.100.



Admissible load F as a function of the operating pressure p

Max. elastic deformations s as a function of support force F max. operating pressure 500 bar




Connection		at the	at the
Bolt Ø	[mm]	40	40
Stroke +0.4 -0.2	[mm]	18	18
Adm. load force	[kN]	48	48
Oil volume/stroke	[cm ³]	5.7	5.7
Max. flow rate	[cm ³ /s]	70	70
Recom. mini. pressu	re [bar]	100	100
Plunger contact force	e [N]	(60	- 100) *
a +1.2 -0.9	[mm]	125	130.5
b	[mm]	111	116.5
С	[mm]	22	26.5
d	[mm]	85	85
е	[mm]	68	68
Øf	[mm]	8.8	8.8
g	[mm]	M 8	M 8
h	[mm]	11	_
i		G 1/4	G 1/4
k	[mm]	-	42.5
I	[mm]	54	54
Øm	[mm]	M78x2	M78x2
n	[mm]	M12	M12
0	[mm]	12	12
р	[mm]	36	36
Weight	[kg]	4.2	4.2
Part no.		1911 022	1912022
* atralia danandant			

^{*} stroke-dependent

Accessory

Capstan nut **Part no. 3522007 3522007**

Extending hydraulically - contact by spring force, double acting, max. operating pressure 500 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also deflection and vibration under machining loads.

It is recommended to use double-acting elements if applied in larger hydraulic clamping fixtures with long lines, especially if the return oil is cycled and has to return in a predetermined time.

Description

This hydraulic work support contains a double-acting sliding cylinder. The support plunger is retracted in off-position.

When pressurised at "A", the piston pushes the support plunger against the inserted workpiece by means of spring force. As soon as the piston has touched the internal stop, the pressure rises and the support plunger is hydraulically locked. With type 1911 006, it is possible to effect lock-

ing separately through port "K".
For unclamping, port "A" is depressurised and port "E" is pressurised. The locking is released so that the hydraulic piston can pull back the support plunger to the off-position.

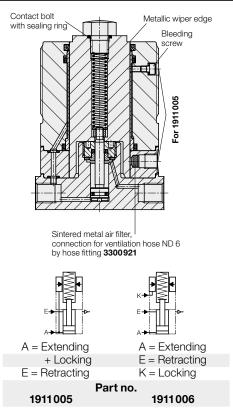
The internal part of the work support is protected against dust and swarf by a sintered metal air filter.

Important notes

If there is any danger of fluids being sucked into the filter, a vent hose has to be connected.

The contact bolt must only be removed if it is replaced by another contact bolt with 12 mm thread length.

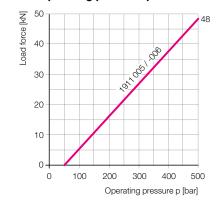
Spring force should not be used to lift workpiec-

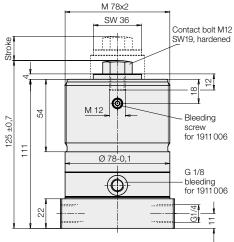

Contact bolts and extensions with large weight can influence the function of this component. Work supports are not suitable to compensate

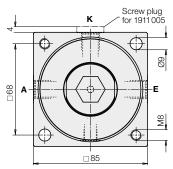
side loads. Work supports must only be operated with a

sealed contact bolt. In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf holdup in the area of the metallic wiper edge.

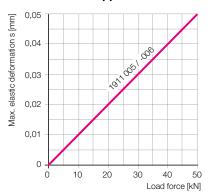
Remedy: Regular cleaning.


Operating conditions, tolerances and other data see data sheet A 0.100.


Accessories Capstan nut

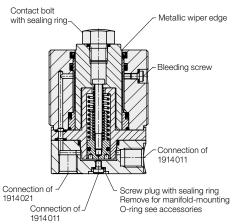

3522007 Part no. Ø6 6,5 M 78 x 2

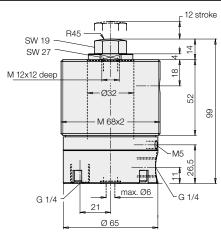
Admissible load F as a function of the operating pressure p

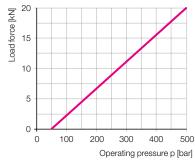

Dimension drawing for 1911 006

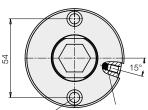
Bolt Ø		[mm]	40
Stroke		[mm]	18 ^{+0.7} _{-0.6}
Adm. load force	100 bar	[kN]	5
Aum. load lorce	500 bar	[kN]	48
Plunger contact force	[N]	50 – 100	
Recom. mini. pressure	[bar]	100	
Recom. mini. pressure	retracting	[bar]	20
Oil volume/stroke		[cm ³]	2
Max. flow rate		[cm ³ /s]	25
Weight		[kg]	4.1

Max. elastic deformations s as a function of support force F






Extending hydraulically - contact by spring force, single acting with spring return, max. operating pressure 500 bar



Admissible load F as a function of the operating pressure p

Bore hole and counterbore Ø 7/ Ø 10.5x7 deep for socket head cap screw ISO4762 M6x85

Sintered metal air filter, connection possibility for ventilation hose ND6 by hose fitting M5 (see G 0.110)

The support plunger is retracted in off-position. When pressurised, the support plunger moves against the inserted workpiece by means of spring force. With increasing oil pressure, the support plunger locks hydraulically. After the system has been unclamped, the support plunger returns to the off-position.

Hydraulic work supports are used to provide a

self-adjusting rest for the workpiece during the

machining operations. They compensate the workpiece surface irregularities, also deflection

and vibration under machining loads.

Application

Description

Important notes

es.

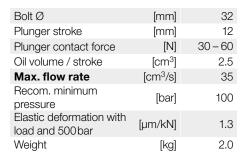
side loads.

sealed contact bolt.

The support plunger is provided with female thread to enable the use of threaded pieces for height adjustment.

Oil supply can alternatively be effected from the side or from below.

The internal part of the work support is protected against dust and swarf by a sintered metal air filter.


If there is any danger of fluids being sucked into

Contact bolts and extensions with large weight can influence the functions of this component. Work supports are not suitable to compensate

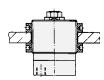
the filter, a vent hose has to be connected. Spring force should not be used to lift workpiec-

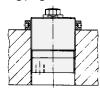
Installation examples 1914011

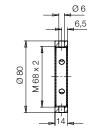
Oil supply of version 1914011 can optionally be effected by lateral pipe connection or from below through a drilled channel in the fixture base plate. For this purpose, the screw plug with sealing ring is removed, an O-ring 10x2 is inserted and the lateral connection is closed with the screw plug G 1/4.

	Part no.
Connection at the side	1914011
Connection at the bottom	1914021

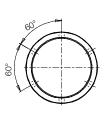
Article available on request


Accessories


Accessories	
O-ring 10x2	3000347
Screw plug G 1/4	3610264
Capstan nut M68x2	3522008
Spare sealing ring (for contact bolt)	3000536
Contact bolt M12x12	3614028
Insertion nipple fitting M5	3890091


Work supports must only be operated with a Installation examples 1914021

Oil supply of version 1914021 is effected by a pipe connection at the bottom.


The lateral pipe connection is closed with a sealing plug

Accessory: Capstan nut

Operating conditions, tolerances and other data see data sheet A 0.100.

In dry machining applications, with minimum

quantity lubrication or in case of accumulation of

very small swarf, there can be a swarf holdup in

the area of the metallic wiper edge.

Remedy: Regular cleaning.

contact by spring force or air pressure, single acting, max. operating pressure 500 bar

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also deflection and vibration under machining loads.

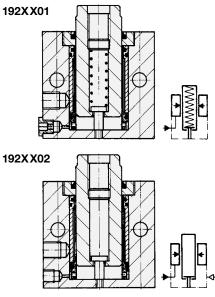
Installation

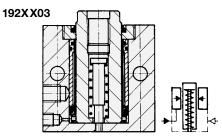
The universal block cylinder shape allows vertical and horizontal mounting, with oil feed via normal pipe connection or by manifold mounting direct to the fixture through drilled channels in the fixture body.

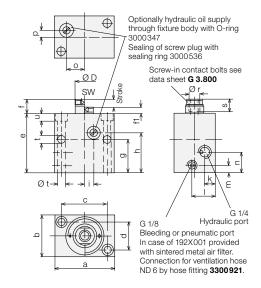
Function

Hydraulic locking is made together with hydraulic clamping of the workpiece, or independently. The support plunger is provided with female thread to enable the use of threaded pieces for height adjustment.

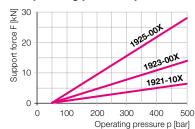
There are three variations of plunger actuation:


- **1. Spring advanced;** plunger extended in off-position
- **2. Air pressure advanced;** without spring return
- **3. Air pressure advanced;** with spring return The pneumatically-actuated plunger allows precise setting of the plunger contact force by means of a pressure reducing valve. If a danger exists of sucking fluids through the pneumatic port, on the spring-advanced unit, a vent hose should be connected.


Important notes


Work supports are not suitable to compensate side loads.

Operating conditions, tolerances and other data see data sheet A 0.100.


It is absolutely necessary to follow the instructions for venting of the spring area on data sheet G 0.110.

Admissible load F as function of the operating pressure p

Plunger Ø D	[mm]	16	20	35
Stroke	[mm]	6	8	10
Support force at 500 bar	[kN]	7	12.5	28
Spring force min.	[N]	8	13.5	19.2
Spring force max.	[N]	10	17	24
Plunger contact force at 1 bar air pressure (deduct spring force if necessary)	[N]	20.1	31.4	96.2
Recom. min. oil pressure	[bar]	100	100	100
a	[mm]	60	65	85
b	[mm]	35	45	63
C	[mm]	40	50	63
d	[mm]	22	30	40
е	[mm]	56	64	79
f	[mm]	12	15	20
f1	[mm]	6	7	10
g	[mm]	26	36	39
h	[mm]	36	43	52
i	[mm]	7	10	12
k	[mm]	12.5	11.5	20.5
	[mm]	17.5	25.5	39.5
m	[mm]	8.5	8	8
n	[mm]	38	22	25
0	[mm]	14.5	19	25
p	[mm]	5	7	11
Ør	[mm]	M 10	M 12	M 16
S	[mm]	14	14	21
Øt	[mm]	6.5	8.5	10.5
U	[mm]	6	.8	10
SW	[mm]	13	17	27
Weight	[kg]	0.8	1.2	2.6
Part no.		1001101	1000001	4005.004
Extended by: Spring force		1921 101	1923 001	1925001
Air pressure		1921 102	1923002	1925002

Spare seal ring

Screw plug G 1/4

O-ring 10x2

Accessories

Air pressure with spring return

Contact bolt, dome head (see G 3.800)

1925003

3610264

3000347

3000536

3614003

1923003

3610264

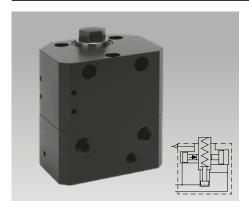
3000347

3000536

3614028

1921 103

3610264


3000347

3000536

3614002

Work Support, Self-Locking

with pneumatic position monitoring, 3 sizes, 2 types of function, double acting, max. operating pressure 500/400 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also vibration and deflection under machining loads.

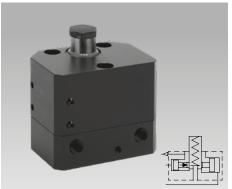
Hydraulic locking is made together with hydraulic clamping of the workpiece, or independently.

Due to the self-locking function of the support plunger, these work supports are particularly suitable for:

- Manufacturing systems with pallet store
- Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Automatic manufacturing systems
- Assembly lines
- Indexing machines
- Special machine tools

Important notes

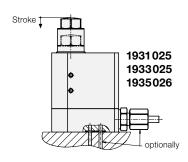
If there is any danger of fluids being sucked into the filter, a vent hose has to be connected at the venting port.


The standard contact bolt in the support plunger protects the interior against contamination. For the use of self-manufactured contact bolts please consider the installation dimensions (see page 4).

For unlocking of the support plunger the same pressure as for clamping is required.

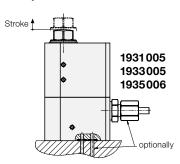
Support and clamping forces have to be adapted to each other, so that there will be sufficient force reserve available for the work support to absorb the machining forces (see page 4).

The self-locking is not positive. The introduction of vibrating machining forces has to be avoided. Admissible load force see diagrams (page 2 and 3).

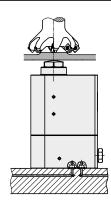

Operating conditions, tolerances and other data see data sheet A 0.100.

Function

For the plunger contact at the workpiece there are two variants:


1. Off-position extended

When loading the fixture, the support plunger is pushed back by the workpiece and contacts the workpiece by spring force. Then hydraulic locking can be effected. During unclamping the support plunger will be unlocked and moved forward by a little spring force when unloading the workpiece.


Advantage: Compact design.

2. Off-position retracted

When pressurising the element, the support plunger moves forward with a light spring force against the workpiece. Then locking is automatically effected.

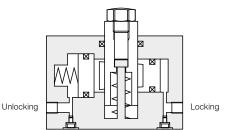
Advantage: Unimpeded loading and unloading of the clamping fixture!

Advantages

- No yielding at the workpiece, even if pressure drops, due to patented locking with selflocking function.
- Very little elasticity of the support plunger.
- No axial displacement of the support plunger during locking.
- Compensation of side loads, if a clamping element clamps directly onto the workpiece (see application example).
- Optimum adaptation to the workpiece due to asymmetrical shape of the body.
- Little contact force to the workpiece due to spring force.
- Oil supply optionally via fittings or drilled channels
- High process safety due to integrated pneumatic position control as well as hydraulic retraction of the support plunger (193X00X)
- Mounting position: any
- Standard FKM seals

Application example

Manifold-mounted work support with swing clamp 1893 102 as per data sheet B 1.8803.

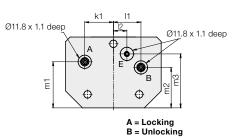


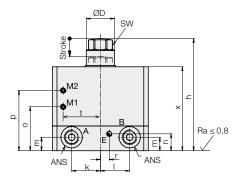
Dimensioning see page 4.

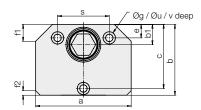
Type of function: Spring force

Off-position extended • Contact by spring force

Function


Clamping


The support plunger is pushed back by the inserted workpiece, the spring force has to be overcome.


Due to the hydraulic pressure the wedge surface of the cross piston is moved against the support plunger and thereby the support plunger is locked.

Unclamping

For unlocking of the support plunger the same pressure as for clamping is required. The support plunger contacts the workpiece until it is taken out of the fixture.

operating proceurs

Notes:

1. Manifold-mounting

For manifold mounting remove screw with sealing (see bottom) and insert O-ring 9x1.5 (Part no. 3001 305) into the counterbore.

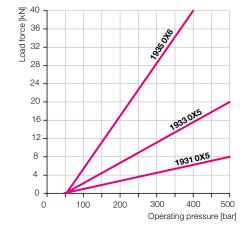
Connecting hole max. Ø 7 mm. Screw in plug G 1/4 or G 1/8 (Part no. 3610264 or 3610263).

2. Pneumatic position monitoring

To operate the position monitoring, remove the set screws (M5) and screw in insertion nipple fitting (Part no. 3890091) or L-type insertion nipple fitting (Part no. 3890094).

M1 – support plunger retracted, thread M5.

M2 – support plunger extended, thread M5.

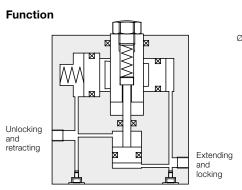

500

400

E – do not close venting port, thread M5 (see important notes).

500

Admissible load force as a function of the operating pressure



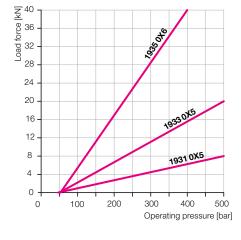
Max. operating pressure	[bar]	500	500	400
Load force at 500/400 bar	[kN]	8	20	40
Support plunger ØD	[mm]	16	25	40
Stroke of support plunger	[mm]	8	12	20
а	[mm]	70	85	140
Port		G1/8	G1/4	G1/4
b	[mm]	48	63	105
b1	[mm]	13	18	36
C	[mm]	42	57	95
е	[mm]	6	12	16
f1 x 45°	[mm]	10	15	22
f2 x 45°	[mm]	4	4	4
g	[mm]	5,5	6,6	10,5
h	[mm]	76,5	99,5	156,5
k	[mm]	22	25,5	44
k1	[mm]	22	25,5	44
	[mm]	22	26	44
11	[mm]	20	24,5	49
12	[mm]	0	12,0	15
m	[mm]	14	12	15
m1	[mm]	36	41	65
m2	[mm]	22	36	44
m3	[mm]	31,5	48	80
n	[mm]	7	15	15
0	[mm]	28,5	38	58,6
p	[mm]	43	53,5	85,5
r	[mm]	6	9	15
S	[mm]	36	46	80
t	[mm]	26	33	60
u	[mm]	10	11	18
V	[mm]	11	15	27
X	[mm]	60	74,5	120
SW	[mm]	17	19	30
Contact/spring force	[N]	15 up to 22	23 up to 50	55 up to 110
Recommended minimum pressure	[bar]	100	100	100
Max. oil volume stroke / locking	[cm ³]	0,2	4,9	7,5
Max. oil volume return stroke	[cm ³]	0,3	8,4	11,7
Max. flow rate	[cm ³ /s]	25	25	25
Max. elastic deformation				
during load	[µm/kN]	0,7	1,5	1
Weight	[kg]	1,4	2,8	12,5
Part no.	[. 9]	1931 025	1933025	1935026
Accessories (not included in the deli	ivery)			
Part no. O-ring (FKM) 9 x 1,5 Part no. plug		3001305 3610263	3001305 3610264	3001 305 3610 264

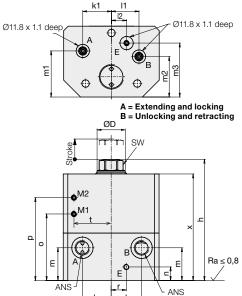
[har]

Type of function: Hydraulic pressure and spring advanced

Extending hydraulically • Contact by spring force

Clamping


The support plunger is extended by a small piston and contacts the workpiece with spring


Due to the increasing hydraulic pressure the wedge surface of the cross piston is moved against the support plunger and thereby the support plunger is locked.

Unclamping

For unlocking of the support plunger the same pressure as for clamping is required. At the same time the small piston is retracted by hydraulic pressure and takes the support plunger

Admissible load force as a function of the operating pressure

Øg / Øu / v deep

Notes:

1. Manifold-mounting

For manifold mounting remove screw with sealing (see bottom) and insert O-ring 9x1.5 (Part no. 3001 305) into the counterbore.

Connecting hole max. Ø 7 mm. Screw in plug G 1/4 or G 1/8 (Part no. 3610264 or 3610263).

2. Pneumatic position monitoring

To operate the position monitoring, remove the set screws (M5) and screw in insertion nipple fitting (Part no. 3890091) or L-type insertion nipple fitting (Part no. 3890094).

M1 – support plunger retracted, thread M5.

M2 – support plunger extended, thread M5.

E - do not close venting port, thread M5 (see important notes).

Max. operating pressure	[bar]	500	500	400
Load force at 500/400 bar	[kN]	8	20	40
Support plunger ØD	[mm]	16	25	40
Stroke of support plunger	[mm]	8	12	20
a	[mm]	70	85	140
Anschluss		G1/8	G1/4	G1/4
b	[mm]	48	63	105
b1	[mm]	13	18	36
С	[mm]	42	57	95
e	[mm]	6	12	16
f1 x 45°	[mm]	10	15	22
f2 x 45°	[mm]	4	4	4
g	[mm]	5,5	6,6	10,5
h	[mm]	86,5	107,5	163,5
k	[mm]	22	25,5	44
k1	[mm]	22	25,5	44
I	[mm]	22	27	44
I1	[mm]	20	24,5	49
12	[mm]	0	13,5	15
m	[mm]	30	29	20
m1	[mm]	36	41	65
m2	[mm]	22	36	44
m3	[mm]	31,5	48	80
n	[mm]	15	12	35
0	[mm]	46,5	58	85,6
p	[mm]	61	73,5	112,5
r	[mm]	14,5	13,5	15
S	[mm]	36	46	80
t	[mm]	26	33	60
u	[mm]	10	11	18
V	[mm]	11	15	27
X	[mm]	78	94,5	147
SW	[mm]	17	19	30
Contact/spring force	[N]	15 up to 22	23 up to 50	55 up to 110
Recommended minimum pressure	[bar]	100	100	100
Max. oil volume stroke / locking	[cm ³]	1,8	7,3	11,5
Max. oil volume return stroke	[cm ³]	1,6	9,5	14,2
Max. flow rate	[cm ³ /s]	25	25	25
Max. elastic deformations	[011175]	20	20	20
during load	[µm/kN]	0,7	1,5	1
	., .			15.5
Weight Port no	[kg]	1,8 1931 005	3,5 1933005	15,5 1935006
Part no.	i (on ()	1931005	1900005	1935006
Accessories (not included in the del	ivery)	2004.205	2004 205	2004 205
Part no. O-ring (FKM) 9x1.5		3001305	3001305	3001305
Part no. plug		3610263	3610264	3610264
actual issue see wh.roemheld-usa.co	om/B1930		B 1.930 / 4-23	3 US - page 3

Combination with clamping elements Control / position monitoring • Self-manufactured contact bolts

Combinations of work supports with swing clamps of the same size

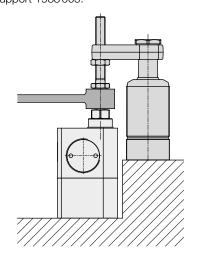
The admissible load force of work supports has always to be dimensioned so that the clamping force of the used clamping elements and the static and dynamic machining forces can be safely compensated.

- Admissible load force
- Clamping force
- Safety (reserve)
- = Possible machining force

On principle the load force of the work supports should be at least twice the clamping force of the clamping elements.

Load force ≥ 2 x clamping force

If the total of all occuring forces exceeds the admissible load force, the support plunger of the work support will be pushed back and the work support will be damaged.


For combinations of work supports with swing clamps (see example), this condition should be met at 200 bar.

For the smallest size 1931 there is no suitable swing clamp available. With the swing clamp 1891 XXX the operating pressure would have to amount to 500 bar! For both larger work supports, there are suitable swing clamps as shown in the below charts.

The vertical distance of the two straight lines in the area of the colorised surface indicates the resulting maximally possible machining force including reserve.

Example

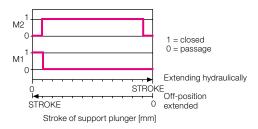
The swing clamp 1893104 (data sheet B 1.881) clamps a workpiece onto the work support 1933005.

For size 1933 the following can be taken from the diagram:

Minimum operating pressure:	200 bar
Load force at 200 bar:	6,6 kN
Clamping force at 200 bar:	2,8 kN

Possible machining force at 200 bar:

Admissible load force:	6,6 kN
- Clamping force:	– 2,8 kN
= Possible machining force:	3.8 kN

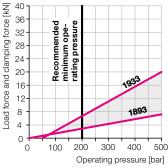

Pneumatic position monitoring

With the pneumatic position monitoring the following messages can be realised:

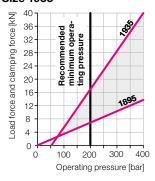
M1 – support plunger retracted

M2 – support plunger within the useable working area

Function chart



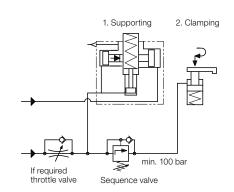
For process-safe functioning of the position monitoring, air pressure and air volume must be adapted.


Nominal values: Air pressure 2.5 bar Flow rate 12 l/min

The measurable differential pressure depends on jet diameter, leakage, pressure, flow rate and pipe length. It should be approx. 1.8 bar. For the interpretation, we recommend a pneumatic differential pressure switch, which can monitor up to 8 work supports. Also pneumatic pressure switches can be used. According to the number of the connected work supports, air pressure or flow rate have to be adapted possibly.

Size 1933

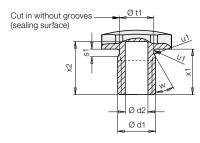
Size 1935


Important note

The admissible load forces as per the diagram are static. The machining forces can also generate vibrations which exceed by far the mean value. For this reason a corresponding safety factor has to be taken into account.

Control of clamping sequence

(including reserve)


The sequence – supporting and clamping – has to be controlled as a function of the pressure, e.g. by a sequence valve.

The sequence valve has to be adjusted to an opening pressure above the intersection of the two straight lines in the diagram.

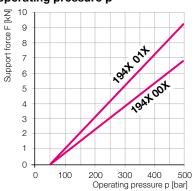
If due to a too high flow rate a throttle valve is required, installation should be made as shown in the hydraulic circuit diagram.

Required dimensions for self-made contact bolts

Work support	1931	1933	1935
Ød1	M10	M12	M20
Ød2	6	-	-
x1	12	9	12
x2	14	-	-
s1	2	3	4
t1	$9,1\pm0,05$	$9,4\pm0,05$	$16,5\pm0,05$
u1	R0,6	R0,4	R0,6
W	30°	39 to 60°	39 to 60°
O-ring	9x1	9x2	15,54x2,62
Part no.	3001674	3001869	3000103

Threaded-Body Work Supports

max. operating pressure 500 bar



General technical data

Plunger Ø	[mm]		16
Stroke	[mm]	8	(15)
Adm. support force at 500 bar			
194X00X	[kN]		6.5
194X01X	[kN]		9.5
Recom. minimum oil pressure	[bar]		100
Seating torque	[Nm]		60
Weight approx	[kg]		0.25

Mounting dimensions, accessories and application examples see reverse page

Admissible load F as function of the operating pressure p

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also deflection and vibration under machining loads. Two sizes are available. The threaded-body design of the elements allows direct installation in clamping fixtures, in horizontal or vertical mounting position, and thereby a space-saving arrangement. Hydraulic oil is fed through drilled channels in the fixture body. Hydraulic locking is made together with hydraulic clamping of the workpiece, or independently.

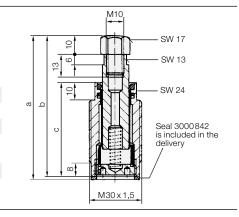
There are three variations of plunger actuation:

- **1. Spring advanced;** plunger extended in off-position.
- 2. Air pressure advanced; plunger retracted in off-position. The pneumatically-actuated plunger allows precise setting of the plunger contact force by means of a pressure reducing valve.
- **3. Hydraulic pressure and spring advanced;** plunger retracted in off-position It moves forward with a light spring force against the workpiece, when hydraulic pressure is applied.

Combination possibilities

The work supports 194X01X can be combined with the swing clamps as per data sheet B 1.891. (Example see reverse page).

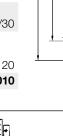
Important notes!


Work supports are not suitable to compensate side loads.

Operating conditions, tolerances and other data see data sheet A 0.100.

Contact by spring forcet

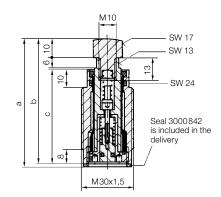
b [mm] 79 89 c [mm] 54 64 Spring force	Part no.		1940000	1940010
b [mm] 79 89	, 0	[N]	8/13	8/13
. 3	С	[mm]	54	64
a [mm] 80.5 90.5	b	[mm]	79	89
	а	[mm]	80.5	90.5


Contact by air pressure

а	[mm]	84	94	
b	[mm]	72.5	82.5	
С	[mm]	71	81	
d	[mm]	54	64	
Spring force min./max.	[N]	20/30	20/30	
Plunger contact force at 1 bar air pressure				

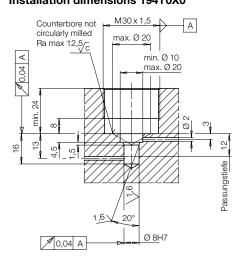
Plunger contact force at 1 bar air pressure (deduct spring force if necessary) [N] 20

Part no. 1941 000 1941 010

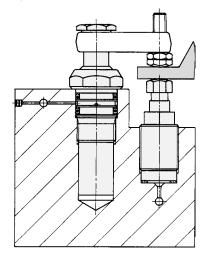


		l I	M10	
_				SW 17
Ī				SW 13
	o <u>₹</u>			13
				SW 24
- m	Q 0 p			Seal 3000842 is included in the delivery
		∞ 1		
	13			O-ring and back-up
		Q	1 08f7	ring (0131 081) are included in the delivery
		MS	30 x 1,5	

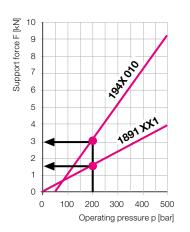
Contact by oil pressure


Stroke	[mm]	8	15	8	15
а	[mm]	72,5	79,5	82,5	89,5
b	[mm]	71	78	81	88
С	[mm]	54	61	64	71
Spring force min./max.	[N]		10/23		10/23
Max. oil flow rate	[cm ³ /s]		25		25
Part no.	Stroke 8	194	2000	194	2010
	Stroke 15	194	2005	194	2015

Installation dimensions 19400X0/19420X0


Counterbore not circularly milled Ra max 12,5 C M30 x 1,5 A max. Ø 20 min. Ø 2

Installation dimensions 19410X0


Combination possibility

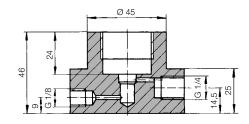
Threaded-body work support with threaded-body swing clamps as per data sheet B 1.891

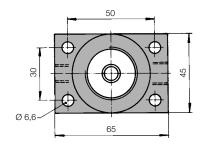
Support and clamping forces have to be adapted to each other, so that there will be sufficient force reserve available for the threaded-body work support to absorb the machining forces.

The diagram below shows the graphs of the clamping and support forces for the 2 possible combinations.

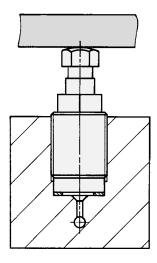
Example

Swing clamp 1891 XX1 clamps against threaded-body work support 194X010. Operating pressure 200 bar.


	Support force	3.0 kN
_	Clamping force	1.5 kN
=	possible opposing force	1.5 kN

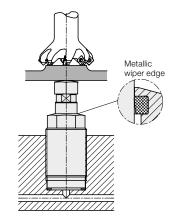

Accessories

Mounting body **Part no. 3467086** as per data sheet B 1.460 or


body with pneumatic connection

Part no. 3467 112

Installation example


Threaded-Body Work Support

M 30 x 1.5, metallic wiper edge, 2 sizes, 3 types of function, single acting, max. operating pressure 500 bar

Advantages

- Space-saving threaded-body version
- 2 sizes
- 3 types of function
- Contact force by spring or pneumatically adjustable (1941 0X2)
- Load force 6.5 or 9.5 kN
- Metallic wiper edge and FKM wiper
- Corrosion-resistant interior parts
- Mounting body as accessory

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also vibration and deflection under machining loads.

The threaded-body design allows for space-saving and direct installation into the fixture body. Oil supply is made through drilled channels.

Description

In the body of the threaded-body work support a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

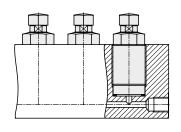
- 1. Spring force
- 2. Air pressure
- 3. Oil pressure combined with spring force

The elements are protected against penetration of swarf by a metallic wiper edge and are sealed against liquids.

Important notes!

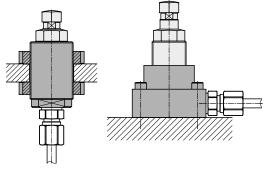
Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger. Remedy: increase the safety factor or the number of work supports.


In case of accumulation of very small grinding swarf there can be a swarf holdup in the area of the metallic wiper edge. Remedy: Regular cleaning in this area.

Work supports must only be operated with a sealed contact bolt. For special versions of contact bolts we can provide you a drawing with the interior contour.

Operating conditions, tolerances and other data see data sheet A 0.100.


Installation and connecting possibilities

Drilled channels

Pipe thread

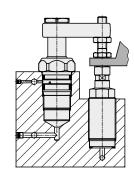
with accessory mounting body with exterior thread with flange

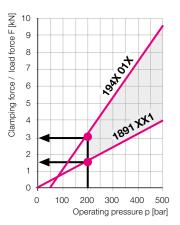
Combination with clamping elements

Load and clamping forces have to be adapted to each other, so that there will be sufficient force reserve available for the threaded-body work support to absorb the machining forces.

Rough estimate:

Min. load force ≥ 2 x clamping force

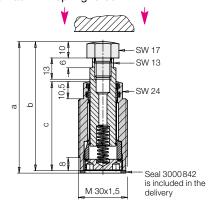

The opposite diagram shows the course of the load and clamping force for the possible combination of 194X01X with a threaded-body swing clamp 1891 XX1 as per data sheet B 1.891. The vertical distance of the two straight lines in the area of the colorised surface indicates the maximally possible machining force including reserve.


Threaded-body swing clamp 1891 101 and threaded-body work support 1942 012. Operating pressure 200 bar

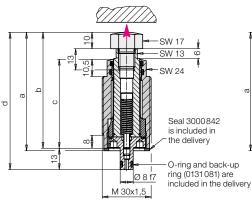
As per diagram:

Adm. load force	3,0 kN
 Clamping force 	1,5 kN
Possible machining force	1,5 kN

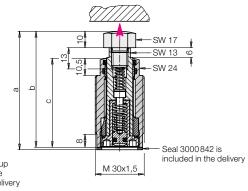
If this force is not sufficient the work support can also be supplied with 500 bar. The pressure for the swing clamp will be reduced.



Dimensions Technical data • Accessories


Spring force

Off-position: Plunger extended Contact with spring force


Air pressure

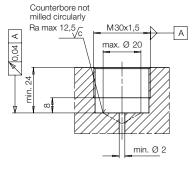
Off-position: Plunger retracted Extend and contact with air pressure

Oil pressure combined with spring force

Off-position: Plunger retracted Extend with hydraulic and contact with spring force

Adm. load	[kN]	6.5	9.5
Stroke	[mm]	8	8
а	[mm]	80.5	90.5
b	[mm]	79	89
С	[mm]	54.5	64.5
Spring force min./max.	[N]	7/12	7/12
Part no.		1940002	1940012

Accessory	Part no.
Mounting body flange	3467111
Mounting body M38x1.5	3467086
Lock nut M38x15	3300088

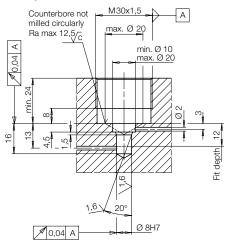

Adm. load	[kN]	6.5	9.5
Stroke	[mm]	8	8
a	[mm]	72.5	82.5
b	[mm]	71	81
С	[mm]	54.5	64.5
d	[mm]	84	94
Spring force			
min./max.	[N]	20/30	20/30
Part no.		1941 002	1941 012

	Part no.
Mounting body flange	3467112

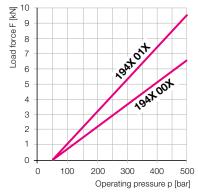
Adm. load	[kN]	6.5	6.5	9.5	9.5
Stroke	[mm]	8	15	8	15
а	[mm]	72.5	79.5	82.5	89.5
b	[mm]	71	78	81	88
С	[mm]	54.5	64.5	64.5	71.5
Spring force		10/00		10/00	
min./max.				16/33	
Part no.	1942	-002	-007	-012	-017

	Part no.
Mounting body flange	3467111
Mounting body M38x1.5	3467086
Lock nut M38x1.5	3300088
Sharp-edged orifice Ø 0.5 mm	3420386

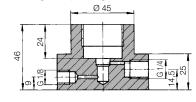
Porting details for 1940 and 1942

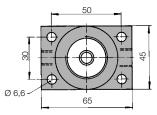


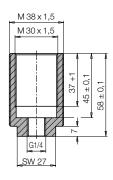
Technical data


Support plunger Ø	[mm]	16
Stroke	[mm]	8/15
Required oil per stroke	[cm ³]	0.5/1
Admissible flow rate*	[cm ³ /s]	25
Plunger contact force at 1 bar Luftdruck (1941)		
(Federkraft abziehen!)	[N]	20
Recommended mini. pressure	[bar]	100
Elastic deformation		
with load and 500 bar	[mm/kN]	0.004
Max. operating temperature	[°C]	80
Seating torque	[Nm]	60
Weight, approx.	[kg]	0.3

^{*} If required insert sharp-edged orifice Ø 0.5 mm in sealing ring (see accessory 1942)


Porting details for 1941


Admissible load force F as function of the operating pressure p

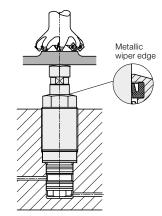

Mounting body flange

only with 3467 112 (for 1941)

Mounting body M38x1.5

Threaded-Body Work Supports

M 30 x 1.5, with metallic wiper edge, 4 sizes, double acting, max. operating pressure 500 bar



Advantages

- High process safety by double-acting function
- 4 sizes

Function

- Space-saving threaded-body version
- Contact force by spring
- Load force up to 6.5 or 9.5 kN
- Metallic wiper edge and FKM wiper
- Corrosion-resistant interior parts

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also vibration and deflection under machining loads.

The threaded-body design allows for spacesaving and direct installation into the fixture body. Oil supply is made through drilled channels.

In case of the double-acting version the return stroke of the support plunger is effected in a precisely defined time, that is above all advantageous in cycle-dependent installations.

When pressurised the piston of the double-acting cylinder extends and the support plunger contacts the already clamped workpiece with spring force. The support plunger will be locked by the in-

The support plunger is retracted in off-position.

creasing hydraulic pressure and can compensate forces in axis direction.

For unclamping the pressure will be reduced and the return line will be supplied with pressure.

The piston returns to its off-position and retracts the support plunger.

In the body of the threaded-body work support a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

The support plunger is extended and retracted by means of a small double-acting cylinder. The threaded-body work supports are protected against swarf by a metallic wiper and sealed against liquids.

Combination with clamping elements

Load and clamping forces have to be adapted to each other, so that there will be sufficient force reserve available for the threaded-body work support to absorb the machining forces.

Rough estimate:

Min. load force ≥ 2 x clamping force

The opposite diagram shows the course of the load and clamping force for the possible combination of 194X11X with a threaded-body swing clamp 1891 XX1 as per data sheet B 1.891. The vertical distance of the two straight lines in the area of the colorised surface indicates the maximally possible machining force including reserve.

Important notes

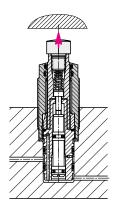
Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

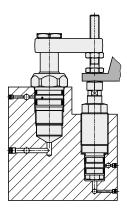
The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude far exceeds an average value, and this can cause yielding of the support plunger. Remedy: increase the safety factor or the number of work supports.

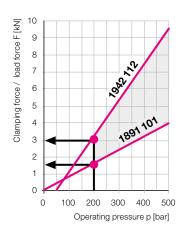
In case of accumulation of very small grinding swarf there can be a swarf holdup in the area of the metallic wiper edge. Remedy: regular cleaning in this area.

Work supports must only be operated with a sealed contact bolt.

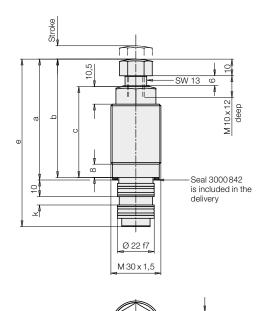
For special versions of contact bolts, we can provide you with a drawing showing the interior

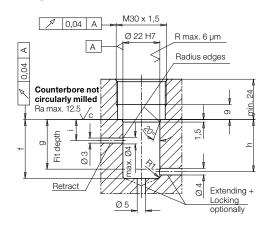

Operating conditions, tolerances and other data see data sheet A 0.100.


Example

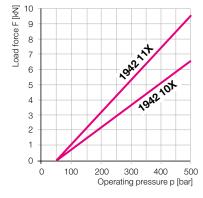

Threaded-body swing clamp 1891 101 and threaded-body work support 1942 112. Operating pressure 200 bar As per diagram:

Adm. load 3.0 kN Clamping force 1.5 kN 1.5 kN Possible machining force


If this force is not sufficient the work support can also be supplied with 500 bar. The pressure for the swing clamp will be reduced.



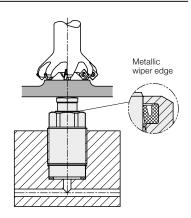
Dimensions Technical data


Porting details

Technical data

Adm. load force [500 bar]	[kN]	6.5	6.5	9.5	9.5
Stroke	[mm]	8	15	8	15
Support plunger Ø	[mm]	16	16	16	16
Oil volume extend	[cm ³]	0.7	1.2	0.7	1.2
retract	[cm ³]	0.2	0.3	0.2	0.3
Admissible flow rate	[cm ³ /s]	25	25	25	25
Recommended min. pressure	[bar]	100	100	100	100
Minimum pressure to retract	[bar]	20	20	20	20
Spring force min./max.	[N]	16/33	10/22	16/33	10/22
Elastic deformation					
with load and 500 bar	[µm/kN]	4	4	4	4
Max. operating temperature	[°C]	80	80	80	80
Tightening torque	[Nm]	60	60	60	60
а	[mm]	72.5	79.5	82.5	89.5
b	[mm]	71	78	81	88
С	[mm]	54.5	61.5	64.5	71.5
е	[mm]	100.5	113	110.5	123
f	[mm]	29.5	35	29.5	35
g	[mm]	24	29.5	24	29.5
h	[mm]	26.5	32	26.5	32
i	[mm]	13	14.5	13	14.5
k	[mm]	5	8	5	8
Weight approx.	[kg]	0.32	0.36	0.36	0.40
Part no.		1942102	1942 107	1942112	1942117

Admissible load force F as a function of the operating pressure p



M 26 x 1.5, with metallic wiper edge, 3 types of function, single acting, max. operating pressure 350 bar

Advantages

- Minimum dimensions
- Minimum distance of the support points 30 mm
- 3 types of function
- Contact force by spring or pneumatically adjustable (1941 900)
- Load force up to 4 kN
- Metallic wiper edge and FKM wiper
- Hardened and sealed contact bolt
- Corrosion-resistant interior parts

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also vibration and deflection under machining loads.

The threaded-body design allows for space-saving and direct installation into the fixture body. Oil supply is made through drilled channels.

Description

In the body of the threaded-body work support a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

There are three variations of plunger actuation:

- 1. Spring force
- 2. Air pressure
- 3. Oil pressure combined with spring force

The elements are protected against penetration of swarf by a metallic wiper edge and sealed against liquids.

Important notes

Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude far exceeds an average value, and this can cause yielding of the support plunger. Remedy: increase the safety factor or the number of work supports.

In case of accumulation of very small grinding swarf there can be a swarf holdup in the area of the metallic wiper edge. Remedy: regular cleaning in this area.

Work supports must only be operated with a sealed contact bolt. For special versions of contact bolts, we can provide you with a drawing showing the interior contour.

Operating conditions, tolerances and other data see data sheet A 0.100.

Types of function

Spring force

The support plunger is maintained in the extended position by spring force.

When inserting the workpiece into the fixture, the support plunger is pushed back and contacts the surface to be supported with spring force.

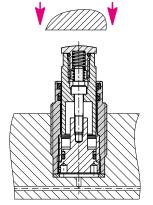
If the workpiece is clamped, the increasing hydraulic pressure locks the support plunger and thus forces in axis direction can be compensated.

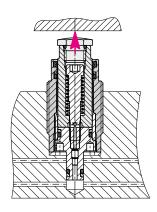
After unclamping the support plunger still contacts the workpiece with spring force, until the workpiece will be unloaded from the fixture.

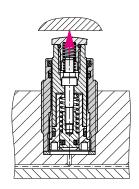
Air pressure

The support plunger is maintained in the retracted position by spring force. When pneumatically pressurised the support plunger moves against the already clamped workpiece. The contact force can be adjusted by means of a pneumatic pressure reducing valve.

The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction. For unclamping hydraulic and air pressure will be released and the support plunger retracts by spring force to its off-position.


Oil pressure combined with spring force


The support plunger is maintained in the retracted position by spring force.

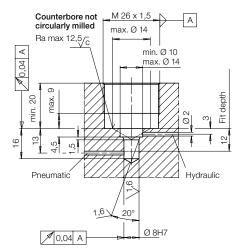

When hydraulically pressurised the small piston extends and the support plunger contacts the already clamped workpiece with spring force.

The support plunger will be locked by the increasing hydraulic pressure and can compensate forces in axis direction.

For unclamping hydraulic pressure will be released. The small piston retracts by spring force to its off-position and also retracts the support plunger.

Dimensions Technical data • Accessories

Spring force Air pressure Oil pressure combined with spring force Part no. 1940900 Part no. 1941 900 Part no. 1942900 Stroke 6.5 SW 14 3,5 SW 13 M 10×8 59,5 SW 22 54,5 / 63* 53/61,5* 61 SW 22 43/51,5* 54,5 53 8 3 99 Seal 3000841 Seal 3000841 is included is included 1 in the delivery က ω in the delivery M 26 x 1,5 Ø 8 f7 M 26 x 1,5


SW 14 SW 13 @ № M 10×1 Seal 3000 841 is included in the delivery M 26 x 1,5 Stroke 6.5 Stroke 15* Springy Stroke 6.5 Springy

1942925 Stroke 15*

Porting details for 1940 and 1942

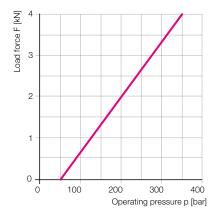
Counterbore not circularly milled Ra max 12,5 c M 26 x 1,5 Α Ø0,04 A max. Ø 14 min. 20 max. 9 min. Ø 2

Porting details for 1941

Accessories for 1942900 and 1942925

Sharp-edged orifice Ø 0.5

Stroke 6.5

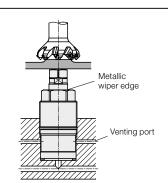

Part no. 3420395

Technical data

Adm. load f	orce (35	[kN]	4	
Support plur	nger Ø	[mm]	16	
Stroke	(19409	00, 1941 900, 1942 900)	[mm]	6.5
Olloke	(19429	25)	[mm]	15
Springy strol	<e*</e		[mm]	6.5
Required oil	per stroke	e (1942900)	[cm ³]	0.42
		(1942925)	[cm ³]	0.96
Admissible fl	ow rate	(19429XX)	[cm ³ /s]	25
Max. operati	ng pressu	ıre	[bar]	350
Recommend	ded minim	ium pressure	[bar]	100
		at 1 bar air pressure	[N]	20
(1941 900, de			. ,	
Spring force		ζ.	[N]	15/25
Elastic defor	mation		[µm/kN]	3
with load and	d 350 bar		[[211/1014]	O
Max. operati	· .	rature	[°C]	80
Max. seating			[Nm]	50
Weight appro	OX.		[kg]	0.2

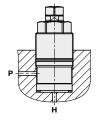
^{*} In the range of the springy stroke the support plunger contacts the workpiece with spring force.

Admissible load force F as a function of the operating pressure p


M 40 x 1.5, with metallic wiper edge, single acting, max. operating pressure 500 bar

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also vibration and deflection under machining loads. The threaded-body design allows for spacesaving and direct installation into the fixture body. Oil supply is made through drilled channels.

Advantages


- Space-saving threaded-body version
- 3 types of operation
- Contact force by spring or pneumatically adjustable (1941 201)
- Load force up to 15 kN
- Metallic wiper edge and FKM wiper
- Venting of the spring area
- Connection of positive air pressure protection is possible
- Mounting body as accessory
- Connection of positive air pressure protection up to 4 bar is possible

Installation and connecting possibilities

Drilled channels

with accessory and mounting body

Description

Application

In the body of the threaded-body work support a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

For contact of the support plunger at the workpiece there are 3 possibilities (description see page 2):

- 1. Spring force
- 2. Air pressure advanced
- 3. Oil pressure combined with spring force The elements are protected against penetration

of swarf by a metallic wiper edge and sealed against liquids. A mounting body for pipe threads or drilled channels is available as accessory.

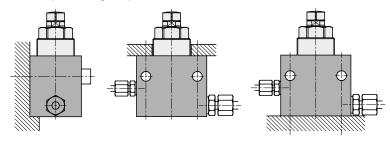
Important notes

Work supports are not suitable to compensate side loads. The admissible load force as per diagram on page 2 is static. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger.

Remedy: increase the safety factor or the number of work supports.

M12 special contact bolts must have a thread length of 12 mm.

Positive air pressure connection


To guarantee functioning of the work supports, a vent port is imperative. No liquids may enter the end of the bore hole (see also data sheet G 0.110 "Venting of the spring area").

It is recommended to connect positive air pressure protection. While locking the support plunger, the positive air pressure must not exceed 4 bar. If the support plunger is not locked, the positive air pressure must be reduced to a maximum of 0.2 bar.

The positive air pressure connection must be free of oil and water.

Pipe thread

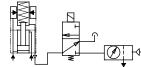
with accessory mounting body

Combination with clamping elements

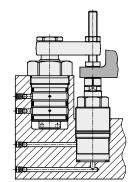
Support and clamping forces have to be adapted to each other, so that there will be sufficient force reserve available for the threaded-body work support to absorb the machining forces.

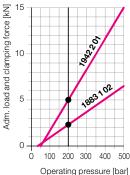
Rough estimate:

Support force ≥ 2 x clamping force

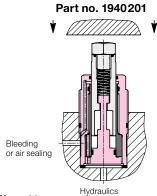

Example

Threaded-body swing clamp 1883 102 and threaded-body work support 1942201. Operating pressure 200 bar (because of the clamping arm)


As per diagram:


Adm. load force	5.0 kN
 Clamping force 	2.3 kN
Possible machining force	2.7 kN

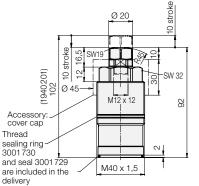
To get a higher support force, the threadedbody work support can be supplied with 500 bar and the pressure for the swing clamp can be reduced.

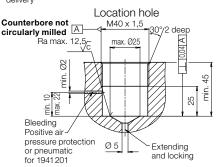


Connection of positive air pressure protection

Technical data Accessories • Dimensions

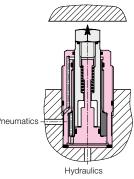
Off-position:
Plunger extended
Contact with spring force


The support plunger is pushed back by the inserted workpiece, the spring force has to be overcome.


The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.

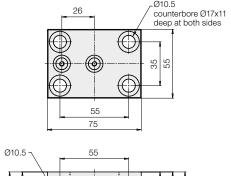
After unclamping the support plunger contacts still the workpiece with spring force, until the workpiece will be unloaded from the fixture.

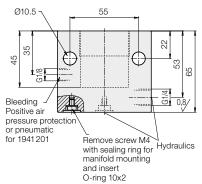
Technical data


Support plunger Ø	[mm]	20
Stroke	[mm]	10
Adm. load force at 500 bar	[kN]	15
Recommended minimum pressure	[bar]	100
Spring force min./max.	[N]	20/32
Plunger contact force at 1 bar air pressure (deduct spring force!)	[N]	31
Max. air pressure for positive air pressure protection	[bar]	0,2
Required oil per stroke (1942201)	[cm ³]	1
Admissible oil flow rate (1942 201)	[cm ³ /s]	25
Seating torque	[Nm]	100
Weight approx.	[kg]	0,6

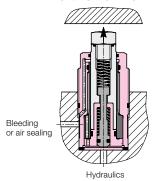
Before mounting! Location hole oil free and dry.

Off-position: Plunger retracted Extend and contact with air pressure


The support plunger contacts the workpiece by air pressure. The contact force is proportional to the air pressure less spring return force.


The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.

For unclamping hydraulic and air pressure will be released and the support plunger retracts by spring force to its off-position.


Accessories	Part no.
Mounting body	0346801
O-ring 10x2	3000347
Spare sealing ring 38/30x2	3001729
Spare thread sealing ring	3001730
Screw plug G1/4	3610264
Screw plug G1/8	3610263
Cover cap	35371009

Mounting body

Part no. 1942201

Off-position: Plunger retracted Extend with hydraulics Contact with spring force

The support plunger is extended by a hydraulically pressurised small piston and contacts the workpiece with spring force.

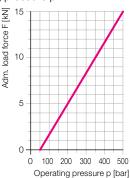
The support plunger will be locked by the increasing hydraulic pressure and can compensate forces in axis direction.

For unclamping hydraulic pressure will be released. The small piston retracts by spring force to its off-position and also retracts the support plunger.

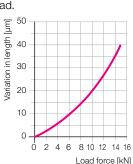
Sharp-edged orifice 0.6 mm for 1942201

If the flow rate is larger than 25 cm³/s (1.5 l/min), malfunctions may occur.

By the installation of the sharp-edged orifice and a special sealing ring the extending speed of the support plunger is reduced.


Part no. 0341 108

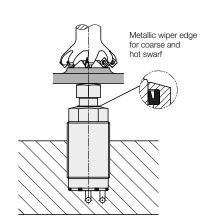
Please note:


The standard sealing ring 38/30x2 cannot longer be used. The sealing ring 3002035 delivered with the sharp-edged orifice is 1 mm thicker, so that the measure of length increases from 92 to 93 mm.

The sharp-edge orifice has to be inserted in the location hole so that letter A is pointing upwards.

Admissible load force F as a function of the operating pressure p.

Variation in length of the support plunger during load.



3 function types, with metallic wiper edge, optional contact control single acting, max. operating pressure 500 bar

Advantages

- Space-saving threaded-body version
- 4 sizes available
- Load force up to 42 kN
- Workpiece contact by spring force or pneumatically adjustable (type 1941)
- Optional pneumatic contact control
- Metallic wiper edge
- Protected FKM wiper
- Inner parts protected against corrosion
- Venting of the spring area
- Connection of positive air pressure protection possible
- Protection cap available as accessory
- Integrated orifice for flow rate limitation (type 1942)
- Mounting position: any
- Connection of positive air pressure protection up to 4 bar is possible

Application

Hydraulic work supports are used to provide a self-adjusting rest for workpieces and avoid their vibration and deflection under machining loads.

The threaded-body design allows for space-saving and direct installation into the fixture body. Hydraulic oil supply and venting are made via drilled channels.

Description

In the body of the threaded-body work supports a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

There are three variations of plunger actuation:

- 1. Spring force
- 2. Pneumatically
- 3. Hydraulically and spring force

The correct contact at the workpiece can be controlled with the optional pneumatic contact control.

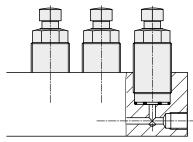
The body with metallic wiper edge protects the subjacent FKM wiper against coarse and hot swarf.

Important notes

Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

The admissible load force as per diagram is valid for static and dynamic load.

Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger


Remedy: Increase the safety factor or the number of work supports.

In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf hold-up in the area of the metallic wiper edge.

Remedy: Regular cleaning or mount protection cap (see page 2).

Operating conditions, tolerances and other data see data sheet A 0.100.

Installation and connecting possibilities Drilled channels

Function

Description on page 2 and page 5.

Pneumatic contact control

Description see page 5.

Combination with clamping elements

With this combination, clamping and machining forces will add up:

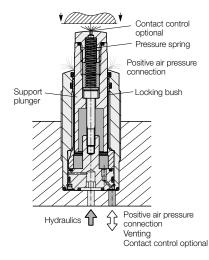
- clamping force
- + max. machining force
- = minimum support force x safety factor Rough calculation from practice:

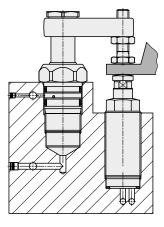
Required support force $\geq 2 \times 1$ clamping force To increase the safety, a support force as high

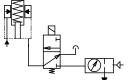
as possible should be achieved

- by using a larger work support or
- by using the max. operating pressure of 500 bar by installing a little intensifier (e.g. data sheet D 8.756), in the supply line of the work supports

Positive air pressure connection

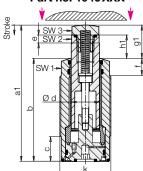

To guarantee functioning of the work supports, a vent port is imperative. No liquids may enter the end of the bore hole (see also data sheet G 0.110 "Venting of the spring area").


It is recommended to connect positive air pressure protection. While locking the support plunger, the positive air pressure must not exceed 4 bar. If the support plunger is not locked, the positive air pressure must be reduced to a maximum of 0.2 bar.


The positive air pressure connection must be free of oil and water.

Example type 1940 XXX

Support plunger in off-position extended

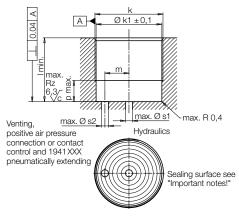


Connection of positive air pressure protection

Technical data Accessories • Dimensions

Spring force Part no. 1940 XXX

Off-position:


Support plunger extended Contact by spring force

When inserting the workpiece, the support plunger is pushed back, the spring force has to be overcome (see page 4).

The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.

After unclamping, the support plunger still contacts the workpiece with spring force, until the workpiece will be unloaded from the fixture.

Porting details

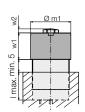
Important notes!

Machining

The code letter c in the surface finish symbol for the sealing surface stands for a concentric groove direction (see drawing), that is given in case of a lowered sealing surface.

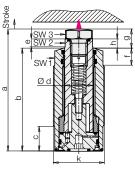
In the case of circularly milled surfaces leakages can occur, since the grooves run at right angle to the sealing surface.

Pay attention when mounting:


The location hole must be dry and oil-free to ensure that no liquids penetrate into the spring area of the work supports.

When exchanging work supports:

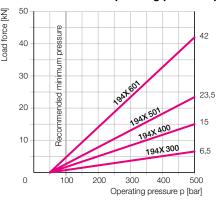
To get a dry location hole, the hydraulic oil in drilled channels must be removed.


Protection cap (accessories)

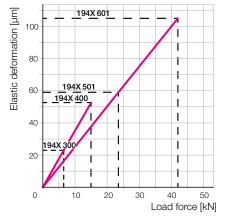
The protection cap is fixed by means of the standard contact bolt to the support plunger. It shall be used above all, if a strong coolant jet is directed onto the support plunger or the wiper edge.

Pneumatically Part no. 1941 XXX

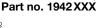
Off-position:

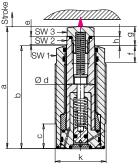

Support plunger retracted Extend and contact with air pressure

The support plunger contacts the workpiece by air pressure. The contact force is proportional to the air pressure less spring return force (see page 4).


The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.

For retraction, hydraulic and air pressure will be released and the support plunger retracts by spring force to its off-position.

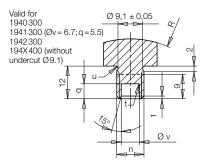

Adm. load force F as a function of the operating pressure p

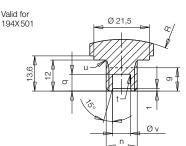


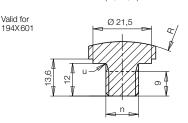
Elastic deformation with load force F and operating pressure 500 bar

Hydraulically and spring force

Off-position:


Support plunger retracted Extend with hydraulics Contact by spring force

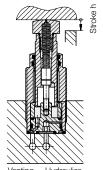

The support plunger is extended by a hydraulically pressurised small piston and contacts the workpiece with spring force.


The support plunger will be locked by increasing hydraulic pressure and can compensate forces in axis direction.

For retraction, the hydraulic pressure will be released. The small piston retracts by spring force to its off-position and also retracts the support plunger.

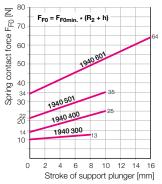
Required dimensions for self-made contact bolts

Contact bolt for contact control

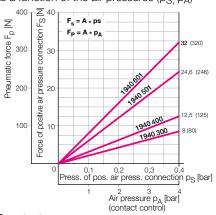


Technical data Accessories • Dimensions

Adm. load force (500 bar)	[kN]	6.		15 20	23.5 28	42 32
Support plunger Ød Stroke	[mm]		15	1 0	10	16
	[mm]	10				
Recommended minimum pressure	[bar]	IC)0	100	100	100
Type 1940 Spring contact force min./max. Recommended pressure for positive air pressure connection	[N] [bar]	10/13 0.2		14/25 0.2	22/35 0.2	34/64 0.2
1941 Pneumatic contact force at 1 bar minus spring return force min./max.	[N]	20 24.5/35	_	31.4 19/31	61.5 22/35	80 31/52
1942 Spring contact force min./max. Spring return force min./max. Max. pressure of positive air pressure connection Max. return pressure	[N] [N] [bar]	10/13 19/39 0.		14/25 30/52 0.2	22/35 47/69 0.2	32/61 67/88 0.2
Required oil per stroke Elastic deformation with load and 500 bar	[cm³]	0.5	1	0.8	1.54	3.22
operating temperature	[µm/kN]	3.	5	3.5	2.5	2.5
Operating temperature	[°C]	0		070	070	070
Tightening torque	[Nm]	60		100	200	400
a	[mm]	75.5	82.5	86	90	115
a1	[mm]	83		96	100	131
b	[mm]	59	66	72.5	78	102.5
C	[mm]	8.	5	17.5	20.5	20.5
e	[mm]	6	5	5.6	3	4
	[mm]	10	.5	12	12	18
9	[mm]	16	.5	13.5	12	12.5
g1	[mm]	24	.5	23.5	22	28.5
1	[mm]	6.		6.5	4	4.5
n1	[mm]	14		16.5	14	20.5
· · · · · · · · · · · · · · · · · · ·	[mm]	M30		M36x1.5	M48x1.5	M60x1.5
Øk1	[mm]	28		34.4	46.4	58.4
min.	[mm]	2		35	42	46
max.	[mm]	37		49	53.5	65.5
n	[mm]	10		12	17	22
Øm1	[mm]	3.		40	52	65
omi 1	[mm]	M ²		M12	M12	M12
o max.	[mm]	8		15	18	18
		19		15	6.5	-
ସ ଅs1 max.	[mm]	8		10	14	16
Øst max. Øs2 max.	[mm]	2		4	5	5
	[mm]	0.		0.2		5
<u>.</u>	[mm]				0.5	_
J ~	[mm]	0.		0.3	0.3	0.3
Øv 	[mm]	6		6.9	7	-
w1	[mm]	28		30	30	43
N2	[mm]	1(7	6.4	6.4
<u>z</u> 1	[mm]	5		6	8	8
72	[mm]	28		32	43	53
3	[mm]	38		45	45	45
SW1	[mm]	24		30	41	50
SW2	[mm]	10		17	22	27
SW3	[mm]	1		19	22	22
Weight, approx.	[kg]	0.32	0.35	0.55	1.0	2.3
Part no.						
Contact by spring force		1940 300P	-	1940400P	1940 501P	1940 601P
Pneumatically extended		1941 300P	_	1941 400P	1941 501P	1941 601P
Hydraulically extended and spring force		1942300P	1942305P	1942400P	1942501P	1942601P
		Р	= Option conta	act control (see al	so page 5)	
Accessories						
Protection cap (splash guard)		3546	110	3546111	3546112	3546113
	[kg]	0.0		0.025	0.032	0.062
Weight protection cap	INUI				3.00_	0.002
Weight protection cap Contact bolt for contact control	[kg]	3614		3614389	3614391	3614418


Spring force

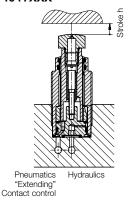
Part no. 1940 XXX



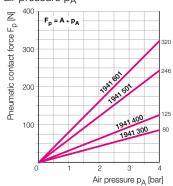
Venting Hydrauli
Positive air pressure
connection
Contact control

Spring contact force F_{F0} as a function of the stroke of the support plunger h

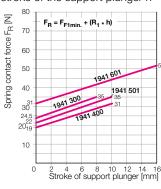
Pneumatic contact forces (F_S, F_P) as a function of the air pressures (p_S, p_A)



Constant	,		,		Consta
1940-	300	400	501	601	1941-
F _{Fomin} .	10	14	22	34	F _{F1} min.
R_2	0.364	1.103	1.34	1.82	R ₁
Α	20.1	31.4	61.5	80	Α
Weight force*					Weight f
Support plunger [N]	0.5	1.3	2.5	3.9	Support
Protection cap [N]	0.23	0.25	0.32	0.62	Protection
* For vertical install	ation: to	p [-], d	own [+]. See e	examples.


Example Work support 1940 300
Protection cap 3546 110
Vertical upward installation
Pres. of pos. air pres. con. 0.2 bar
Stroke of support plunger h = 4 mm

Pneumatically


Part no. 1941 XXX

Pneumatic contact force $\boldsymbol{F}_{\boldsymbol{p}}$ as a function of the air pressure $\boldsymbol{p}_{\boldsymbol{A}}$

Spring return force F_{R} as a function of the stroke of the support plunger h

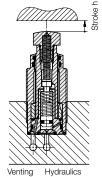
Constant 1941 300 400 501 F_{F1}min. 24 19 22 R₁ 1.34 1.26 1.26

R ₁	1.34	1.26	1.26	1.3
A	20.1	31.4	61.5	80
Weight force*				
Support plunger [N]	0.5	1.3	2.5	3.9

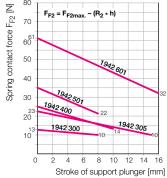
Protection cap [N] 0.23 0.25 0.32 0.62

601

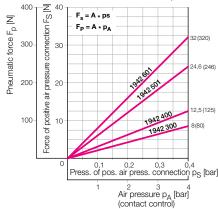
31


occ oxampico.

= 14.74 N


Spring force

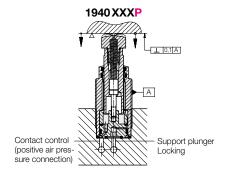
Part no. 1942 XXX



Venting Hydraulics
Positive air pressure
connection
Contact control

Spring contact force F_{F2} as a function of the stroke of the support plunger h

Pneumatic contact forces (F_S, F_P) as a function of the air pressures (p_S, p_A)



Constant						
1942-	300	305	400	501	601	
F _{F2} max.	13	23	25	35	61	
R_2	0.364	0.875	1.103	1.34	1.82	
Α	20.1	20.1	31.4	61.5	80	
Weight force*						
Sup. plunger [N]	0.5	0.6	1.3	2.5	3.9	
Prot. cap [N]	0.23	0.23	0.25	0.32	0.62	

Example	Work support 1942 400 Vertical upward installation Contact control 2 bar Stroke of support plunger	on	= 4 mm
	e $_{c}$ – (R $_{2}$ * h) = 25 – (1.103 * ric contact force F $_{p}$	4)=	20.58 1
$F_P = A * p_A$	= 31.4 * 2	=	62.80 1
- weight fo	rce support plunger	=	1.30 N
contact for	ce	=	1 80.28

contact force

Pneumatic contact control Function sequence • Signal conversion

Off-position:

Support plunger extended with spring force. Positive air pressure connection of 0.2 bar switched on, if required.

Function sequence

Workpiece loading and clamping on fixed points.

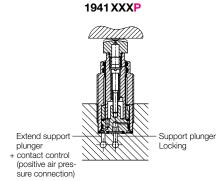
Switch on contact control

After the message "support plungers are in contact" Hydraulic clamping of support plungers.

Machining of the workpiece

Switch off contact control or reduce pressure of positive air pressure connection to 0,2 bar.

Alternative


Leave the contact control continuously switched on. Advantage:

Acts as a positive air pressure connection.

Disadvantages

Higher contact force of support plunger

Signals workpiece contact before the workpiece is clamped to fixed points.

Off-position:

Support plunger retracted with spring force. Positive air pressure connection of 0.2 bar switched on, if required.

Function sequence

Workpiece loading and clamping on fixed points.

Switch on pneumatic pressure to extend and contact control

Support plungers move pneumatically against the workpiece

After the message "support plungers are in contact" Hydraulic clamping of support plungers.

Machining of the workpiece

Switch off contact control or reduce pressure of positive air pressure connection to 0,2 bar.

Important note!

Before unclamping, switch off pneumatic pressure and contact control or reduce pressure of positive air pressure connection to 0.2 bar to allow retraction of the support plunger by spring force.

1942 XXXP

Contact control (positive air pressure connection)

 Extend support plunger
 Locking

Off-position:

Support plunger retracted with spring force. Positive air pressure connection of 0.2 bar switched on, if required.

Function sequence

Workpiece loading and clamping on fixed points.

Switch on hydraulics for support plunger

Support plungers extend hydraulically, they are in contact with the workpiece by spring force and are hydraulically locked.

Switch on contact control

After the message "support plungers are in contact"

Machining of the workpiece

Switch off contact control or reduce pressure of positive air pressure connection to 0,2 bar.

Important note!

Before unclamping, switch off pneumatic pressure for contact control or reduce pressure of positive air pressure connection to 0.2 bar to allow retraction of the support plunger by spring force.

Limits of application

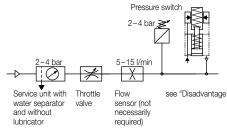
The pneumatic contact control can only be used if

- the contact surface at the workpiece is square to the axis of the work support.
- the contact surface is machined.
- the air is free of oil and water.

Signal conversion: pneumatic - electric

If the contact bolt is in contact with the workpiece, the little nozzle will be closed.

An electro-pneumatic measuring device can either measure the pressure increase or a drop of the air flow rate.


1. Pressure switch

Advantage

Easy adjustment.

Disadvantage

When contacting the workpiece, the tightness of the nozzle depends on the surface quality of the contact surface and depending on the workpiece more or less large changes in air pressure are possible. With an increasing number of work supports, the pressure differences will decrease and this makes the process-safe setting of a pressure switch more difficult.

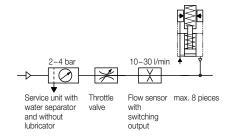
Recommendation

If several work supports have to be controlled, a flow measurement is preferable.

2. Flow meter

The flow meter should have a digital display and at least one adjustable limit switch with a binary output (e.g. type SFAB of FESTO).

Advantages


For the flow measurement, an air pressure of 2 to 4 bar is sufficient so that the support plunger contact force at the workpiece is still relatively low. Simple adjustment of the switching point:

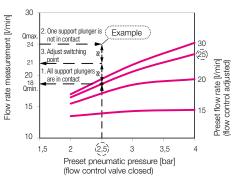
- 1. Measure the flow rate (Qmin) when all support plungers are in contact with the workpiece.
- Repeat the measurement if 1 support plunger has no contact (Qmax).
- 3. Enter and save

switching point = $0.5 \times (Qmin + Qmax)$.

Disadvantages

If the difference (Qmax - Qmin) is too small, increase the flow rate or reduce the number of support points per sensor.

Alternatives


The air gap sensor SOPA from FESTO has an integrated compressed air preparation, as well as two solenoid valves for measuring air and positive air pressure connection.

The device can be expanded to 4 measuring circuits

Diagram for switching point determination

for flow meters with built-in limit switch as a function of the flow rate and the pneumatic pressure. The curves were determined in the test and apply for the following situation:

"In clamped mode, at least one work support of maximum 8 off is <u>not correctly</u> in contact with the workpiece."

Example 8 work supports 1942400P Preset pneumatic pressure

Preset pneumatic pressure 2.5 bar Preset flow rate 2.5 l/min

As per diagram: Flow rate, if all work supports

are in contact approx. 18 l/min

Flow rate, if at least one support plunger is not in contact approx. 24 l/min Switching point = 0.5 * (18 + 24) = 21 l/min

The limit switch at the flow meter is adjusted to 21 l/min.

3. Differential pressure switch

Differential pressure switches (e.g. PEL-System) require only 0.5 to 1.5 bar working pressure.

The exact adjustment of a setting nozzle under practical conditions is required.

with metallic wiper edge, optional contact control double acting, max. operating pressure 500 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for workpieces and avoid their vibration and deflection under machining loads.

The threaded-body design allows for space-saving and direct installation into the fixture body. Hydraulic oil supply and venting are made via drilled channels.

In case of the double-acting version the return stroke of the support plunger is effected in a precisely defined time, that is above all advantageous in cycle-dependent installations.

Description

In the body of the threaded-body work support a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

The support plunger is extended and retracted by means of a small double-acting cylinder.

Contact to the workpiece is made by spring force. A pneumatic contact control is available as an option.

The body with metallic wiper edge protects the subjacent FKM wiper against coarse and hot swarf.

Important notes!

Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

The admissible load force as per diagram is valid for static and dynamic load.

Machining forces can generate vibrations, whose amplitude exceeds far the average value, and this can cause yielding of the support plunger.

Remedy: Increase the safety factor or the number of work supports.

In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf holdup in the area of the metallic wiper edge.

Remedy: Regular cleaning or mount protection cap (see page 2).

Operating conditions, tolerances and other data see data sheet A 0.100.

Advantages

- High process safety by double-acting function
- Space-saving threaded-body version
- 4 sizes available
- Load force up to 42 kN
- Workpiece contact by spring force
- Optional pneumatic contact control
- Metallic wiper edge
- Protected FKM wiper
- Protection cap available as accessory
- Inner parts protected against corrosion
- Venting of the spring area
- Connection of positive air pressure protection possible
- Installed orifice for flow rate limitation
- Mounting position: any

Function

The support plunger is retracted in off-position. When pressurised, the piston of the double-acting cylinder extends against an internal stop and the support plunger contacts the already clamped workpiece with spring force.

The support plunger will be radially locked by the thin-walled locking bush with increasing hydraulic pressure and can then compensate forces in axis direction.

For unclamping, the hydraulic pressure is decreased and the locking bush releases the support plunger. At the same time, the return line is pressurised and the piston retracts the support plunger back to the off-position.

Venting port

To guarantee safe functioning, a vent port is imperative. It is important that no liquids can penetrate into the venting system.

Positive air pressure connection

By connecting a slight overpressure of max. 0.2 bar to the venting system, the work support is effectively protected against the penetration of liquids.

If the support plunger is retracted, the positive air pressure connection can be switched off.

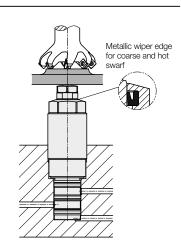
Pneumatic contact control

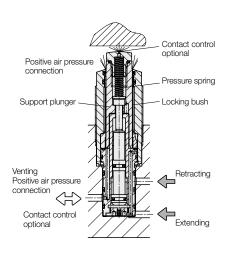
Description see page 4.

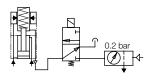
Combination with clamping elements

With this combination, clamping and machining forces will add up:

Clamping force

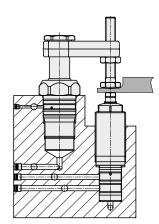

- + max. machining force
- = minimum support force x safety factor

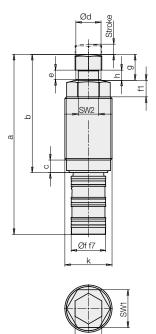

Rough calculation from practice:


Required support force ≥ 2 x clamping force

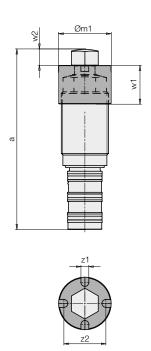
To increase the safety, a support force as high as possible should be achieved

- by using a larger work support or
- by using the max. operating pressure of 500 bar by installing a little intensifier (e.g. data sheet D 8.756), in the supply line of the work supports

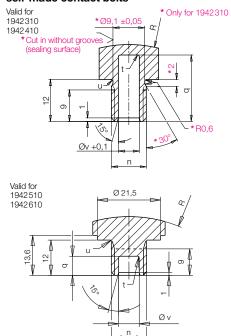



Important note

The positive air pressure must be free of oil and water.


Technical data Accessories • Dimensions

Part no. 1942XXX

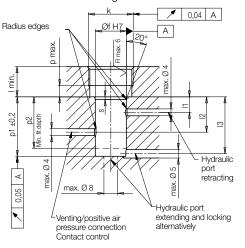


SW3

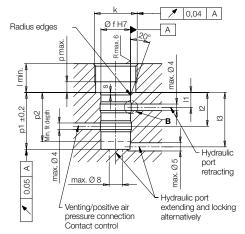
Protection cap (accessory)

Dimensions for self-made contact bolts

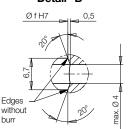
The protection cap is fixed by means of the standard contact bolt to the support plunger. It shall be used above all, if a strong coolant jet


It shall be used above all, if a strong coolant jet is directed onto the support plunger or the wiper edge.

Contact bolt for contact control


Porting details

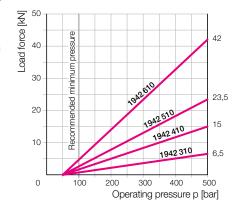
with radiused connecting bores



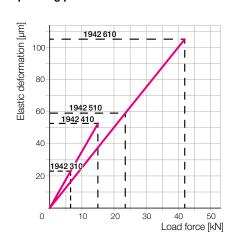
Porting details

with entering slopes

Detail "B"


Pay attention when mounting:

The location hole must be dry and oil-free to ensure that no liquids penetrate into the spring area of the work supports.


When exchanging work supports:

To get a dry location hole, the hydraulic oil in drilled channels must be removed.

Adm. load force F as a function of the operating pressure p

Elastic deformation with load force F and operating pressure 500 bar

Technical data

Adm. load force (500bar)	[kN]	6.5	15	23.5	42
Support plunger Ød	[mm]	16	20	28	32
Stroke	[mm]	8	10	10	16
Oil volume extending	[cm³]	0.63	1.13	1.13	3.22
retracting	[cm³]	0.12	0.35	0.35	0.75
Recommended minimum pressure (support)	[bar]	100	100	100	100
Minimum pressure retracting	[bar]	20	20	20	20
Max. air pressure for positive air oressure connection	[bar]	0.2	0.2	0.2	0.2
Spring contact force min./max.	[N]	10/13	14/25	22/35	32/61
Elastic deformation with load and 500 bar	[µm/kN]	3.5	3.5	2.5	2.5
Operating temperature	[°C]	070	070	070	070
Tightening torque	[Nm]	60	100	200	400
a	[mm]	114.5	124.5	131.5	158
)	[mm]	75.2	85.7	89.7	114.6
2	[mm]	8	17	20	20
Э	[mm]	6	5.6	3	4
Øf H7/f7	[mm]	22	25	30	35
1	[mm]	10.5	12	12	18
9	[mm]	16.5	13.5	12	12.5
1	[mm]	6.5	6.5	4	4.5
<	[mm]	M30x1.5	M36x1.5	M48x1.5	M60x1.5
min.	[mm]	21	31	39	40
1	[mm]	11.5	11.5	12.5	13
2	[mm]	24	24	26	26.5
3	[mm]	37	36.5	39.5	40
ðm1	[mm]	35	40	52	65
1	[mm]	M10	M12	M12	M12
o max.	[mm]	8	12	18	16
o1 ±0.2	[mm]	38.5	38	41	42.5
02	[mm]	35	34.5	37.5	38.5
9	[mm]	19	15	6.5	-
	[mm]	1.5	2	2	2
	[mm]	R 0.5	R 0.2	R 0.5	_
J	[mm]	R 0.6	R 0.3	R 0.3	R 0.3
ðv	[mm]	6	6.9	7	_
v1	[mm]	28	30	30	43
v2	[mm]	10	7	6.4	6.4
 :1	[mm]	5	6	8	8
 ¹ 2	[mm]	28	32	43	53
SW1	[mm]	24	30	41	50
GW2	[mm]	13	17	22	27
SW3	[mm]	17	19	22	22
3	[mm]	35	45	45	45
Veight, approx.	[kg]	0.47	0.68	1.23	2.45
Part no.	נפייו	1942310	1942410	1942510	1942610
Part no. with contact control (see also page 4)		1942310 1942310P	1942410 1942410P	1942510 1942510P	1942610P
Contact bolt for contact control		3614390	3614389	3614391	3614418
Contact bolt for contact control		3614330	3614388	3614420	3614419
		3546110	3546111	3546112	3514419 3546113
Protection cap	[]]				
Weight protection cap	[kg]	0.023	0.025	0.032	0.062

Contact force of the support plunger Pneumatic contact control

The double-acting work support is equipped with a venting port, that can also be pressurised with positive air pressure as described on page 1. This port can also be used for the installation of a

This port can also be used for the installation of a workpiece contact control for the support plunger.

Prerequisite is a small sensor hole in the hardened contact bolt. There are 2 possibilities:

1. When placing a new order

Order work supports with contact control as per chart on page 3:

Part no. 1942X10P

2. Exchange of the contact bolts

The contact bolts with and without sensor hole are dimensionally identical and therefore also replaceable on site.

The part nos. are indicated in the chart on page 3.

Important note

The pneumatic contact control can only be used if

- the contact surface at the workpiece is square to the axis of the work support.
- the contact surface is machined.
- the air is free of oil and water.

Contact force of the support plunger

The contact force depends on the spring contact force (see diagram) and the pneumatic contact force (see diagram) when using positive air pressure connection or contact control.

In the case of vertical mounting position, the weight force can be deduced from the support plunger + contact bolt and the optional protection cap.

$$F_{An} = F_F + F_p - (F_{Sb} + F_{Sk})^*$$
 [N]
()* only vertical installation

1. Spring contact force

$$F_F = F_{max} - (R * h)$$
 [N]

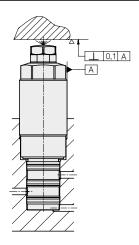
2. Pneumatic contact force**

$$F_p = A * p$$
 [N]

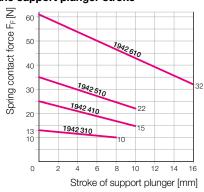
3. Weight force support plunger + contact bolt

F_{Sb} see constant [N]

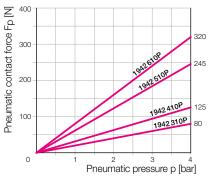
4. Weight force protection cap (accessory)

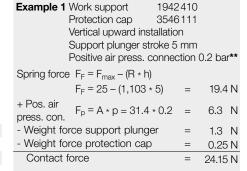

	F _{Sk} see constant	[N]
F _{max} =	max. spring force $(h = 0)$	[N]
R =	Spring constant	[N/mm]
A =	Constant for bolt surface	[-]
	Pneumatic pressure	[bar]
	(positive air pressure connec-	
	tion or contact control)	

Constant


1942		310	410	510	610
Fmax	[N]	13.6	25.9	35.2	60
R	[N/mm]	0.364	1.103	1.34	1.82
Α		20.1	31.4	61.5	80
F _{Sb}	[N]	0.5	1.3	2.5	3.9
F _{Sk}	[N]	0.23	0.25	0.32	0.62

Before unclamping, switch off the pneumatic pressure for contact control or reduce the positive air pressure to 0.2 bar.


** Is only considered, if the pneumatic pressure is switched on before locking the support plunger.



Spring contact force as a function of the support plunger stroke

Pneumatic spring contact force as a function of the pneumatic pressure

Example 2 Work support 1942510P

Vertical upward installation

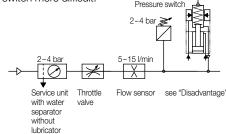
Support plunger stroke 7 mm

Pneumatic pressure 3 bar**

Signal conversion: Pneumatic - electric

If the contact bolt is in contact with the workpiece, the little nozzle will be closed.

An electro-pneumatic measuring device can either measure the pressure increase or a drop of the air flow rate.


1. Pressure switch

Advantage

Easy adjustment.

Disadvantage

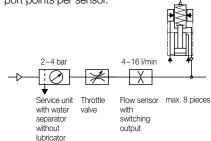
When contacting the workpiece, the tightness of the nozzle depends on the surface quality of the contact surface and depending on the workpiece more or less large changes in air pressure are possible. With an increasing number of work supports, the pressure differences will decrease and this makes the process-safe setting of a pressure switch more difficult.

Recommendation

If several work supports have to be controlled, a flow measurement is preferable.

2. Flow meter

The flow meter should have a digital display and at least one adjustable limit switch with a binary output (e.g. type SFAB of FESTO).


Advantages

For the flow measurement, an air pressure of 2 to 4 bar is sufficient so that the support plunger contact force at the workpiece is still relatively low. Simple adjustment of the switching point:

- 1. Measure the flow rate (Qmin) when all support plungers are in contact with the workpiece.
- Repeat the measurement if 1 support plunger has no contact (Qmax).
- 3. Enter and save the switching threshold = 0.5 x (Qmin + qmax).

Disadvantages

If the difference (Qmax – Qmin) is too small, increase the flow rate or reduce the number of support points per sensor.

Alternatives

The air gap sensor SOPA from FESTO has an integrated compressed air preparation, as well as two solenoid valves for measuring air and positive air pressure connection.

The device can be expanded to 4 measuring circuits.

3. Differential pressure switch

Differential pressure switches (e.g. PEL-System) require only 0.5 to 1.5 bar working pressure. The exact adjustment of a setting nozzle under practical conditions is required.

with metallic wiper edge, 4 sizes single acting, max. operating pressure 70 bar

Hydraulic work supports are used to provide a self-adjusting rest for workpieces and avoid their vibration and deflection under machining loads. This series offers very high support forces already at 70 bar and can directly be connected to the low-pressure hydraulic of the machine tool.

Description

Application

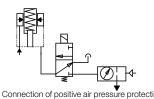
The support plunger is hydraulically extended by a small piston and contacts the workpiece with spring force. The pressure spring can be easily exchanged. Locking of the support plunger through the slotted clamping sleeve is made by means of a ring-shaped conical hydraulic piston where the locking force is transmitted by a low-friction ball shell.

Unlocking and retracting of the support plunger is made by spring force.

Important notes

Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger.


Operating conditions, tolerances and other data see data sheet A 0.100.

Positive air pressure connection

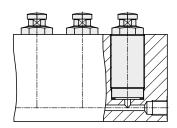
To guarantee functioning of the work supports, a vent port is imperative. No liquids may enter the end of the bore hole (see also data sheet G 0.110 "Venting of the spring area").

It is recommended to connect positive air pressure protection. While locking the support plunger, the positive air pressure must not exceed 4 bar. If the support plunger is not locked, the positive air pressure must be reduced to a maximum of 0.2 bar.

The positive air pressure connection must be free of oil and water.

Advantages

- High support force at 70 bar
- 4 sizes available
- Sizes 1 and 2 are available in 2 lengths
- Space-saving threaded-body version
- Metallic wiper edge and FKM wiper
- Connection for venting and positive air pressure protection
- Interior parts protected against corrosion
- Standard flow rate throttle
- Mounting body as accessory
- Mounting position: any
- Connection of positive air pressure protection up to 4 bar is possible



Metallic wiper edge for coarse and hot swarf

Hydraulics Venting or positive air pressure connection

Installation and connecting possibilities Drilled channels

Combination with clamping elements

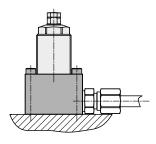
If clamping will be made onto the work supports, the clamping force must be adjusted to the admissible load, so that there will be still a sufficient reserve to compensate the machining forces.

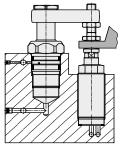
Rough estimate:

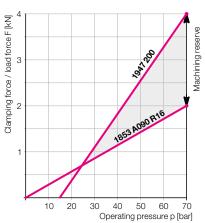
Min. load force ≥ 2 x clamping force

Example

Threaded-body work support 1947 200 Swing clamp 1853 A090 R16 Operating pressure 70 bar

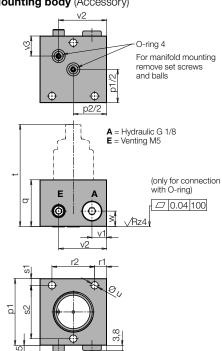

As per diagram:


Adm. load 4.0 kN – Effective clamping force 2.0 kN


Reserve for machining force 2.0 kN

If this is not sufficient, the pressure for the swing clamp has to be reduced.

Pipe thread with accessory mounting body

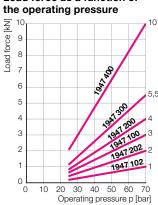


Dimensions Technical data • Accessories

Size		1 short	1	2 short	2	3	4
Adm. load force (70 bar)	[kN]	1	3	2	4	5.5	10
Load force at p (bar)	ľkNĺ	0.019xp - 0.30	0.053xp - 0.68	0.035xp-0.46	0.07xp - 0.91	0.096xp-1.25	0.175xp - 2.28
Support plunger Ød	[mm]	10	10	12	12	15	16
Stroke	[mm]	5	6.5	6	8	8	10
Required oil per stroke	[cm3]	0.5	0.6	0.6	0.9	1.3	2
Admissible flow rate	[cm ³ /s]	25	25	25	25	25	25
Recommended minimum pressure	[bar]	25	25	25	25	25	25
Max. pressure in the return line	[bar]	1	1	1	1	1	1
Spring force min./max.	[N]	3.7 / 6.6	3.7 / 9.5	5.8/10.9	7.0 / 12.0	9.7 / 14.8	8.5 / 14.8
Elastic deformation with load and 70 bar	[IV]	10	9	8.5	6	6	3.5
Operating temperature	[°C]	070	070	070	070	070	070
Tightening torque	[Nm]	32	32	50	50	63	80
		0.15	0.2	0.2	0.25	0.35	0.75
Weight, approx.	[kg]				0.20		0.75
a	[mm]	48.5	66	52	73	69	82
b	[mm]	40	57	41	62	58	71
C	[mm]	34	49	34	54	49	62
е	[mm]	8.5	8.5	9.5	9.5	9.5	9.5
Ø f – 0.1	[mm]	24	24	28	28	34	43
g Ø g1	[mm]	M26x1.5	M26x1.5	M30x1.5	M30x1.5	M36x1.5	M45x1.5
	[mm]	24.5	24.5	28.5	28.5	34.5	43.5
h min.	[mm]	16	16	17	17	18	21
i max.	[mm]	7	7	9	9	8	8.5
Ø k max.	[mm]	8	8	10	10	10	12
Ø k1 max.	[mm]	2.5	2.5	3	3	5	6
	ľmmĺ	9.5	9.5	11	11	13	15
m	[mm]	5	5	6	6	6	6
n	Ìmmĺ	3	3	4	4	4	4
p1	[mm]	45	45	50	50	60	70
p2	[mm]	45	45	50	50	50	55
q	[mm]	35	35	35	35	35	35
r1	[mm]	6.5	6.5	9	9	6	8.5
r2	[mm]	32	32	32	32	38	38
s1	[mm]	4.5	4.5	5	5	6	6
\$2	[mm]	36	36	40	40	48	58
t	[mm]	65.5	83	69	90	84	97
Øu	[mm]	5.5	5.5	5.5	5.5	6.5	6.5
v1	[mm]	8.5	8.5	11	11	11	13.5
v1 v2	[mm]	32	32	36	36	38	42.5
v2 v3	[mm]	12.5	12.5	15	15	20	25
		11.5	11.5	11.5	11.5	11.5	11.5
W CW/1	[mm]					11.5	
SW 1	[mm]	8	8	10 10	10		11
SW 2	[mm]	8	8 22	24	10 24	13	13
SW 3	[mm]	22				30	36
Thread in the support plunger		M6x8	M6x8	M8x12	M8x13	M10x13	M10x13
Part no.		1947 102	1947 100	1947202	1947200	1947300	1947400
Accessories							
Mounting body complete		0346809	0346809	0346810	0346810	0346811	0346812
Spare parts							
O-ring 1		3002264	3002264	3000335	3000335	3000005	3000028
O-ring 2		3002170	3002170	3001640	3001640	3002171	3002172
O-ring 3		3002167	3002167	3001 526	3001526	3000275	3000275
O-ring 4		3000342	3000342	3000342	3000342	3000342	3000342
O 11119 T		0000072	0000072	0000072	0000072	0000072	0000072

Ød O-ring 3 SW1 Thread in the support plunger SW3 Øf_{-0,1} O-ring 1 Øg Øg Øg1 O-rina 2 max. R 0.4 max. Ø k max. Ø k1 Venting or-positive air c = concentric grooves Not circularly milled! pressure

Mounting body (Accessory)


Mounting body complete (Accessory)

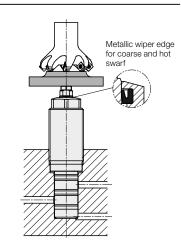
In combination with mounting bodies, the threaded-body work supports become individual components ready for installation.

For pipe connection, there are connecting threads G 1/8 and M5 for hydraulics and venting.

A manifold-mounting connection with thrilled channels is also possible. For this purpose, the screw plugs in the manifold-mounting surface will be removed and the supplied O-rings inserted in the counterbores. The pipe connections remain closed. O-rings and screw plugs are included in the delivery.

Load force as a function of

connection max. 0.2 bar



with metallic wiper edge, double acting, max. operating pressure 70 bar

Advantages

- High process safety by double-acting function
- Space-saving threaded-body version
- 4 sizes available
- Load force up to 10 kN at 70 bar
- Workpiece contact by spring force
- Metallic wiper edge
- Protected FKM wiper
- Inner parts protected against corrosion
- Venting of the spring area
- Connection of positive air pressure protection possible
- Installed orifice for flow rate limitation
- Mounting position: any

Application

Hydraulic work supports are used to provide a self-adjusting rest for workpieces and avoid their vibration and deflection under machining loads. This series offers high support forces already at 70 bar and can directly be connected to the low-pressure hydraulics of the machine tool. In case of the double-acting version, the return

In case of the double-acting version, the return stroke of the support plunger is effected in a precisely defined time, that is above all advantageous in cycle-dependent installations.

Description

The support plunger is hydraulically extended and retracted by means of a small double-acting cylinder. Contact to the workpiece is made by spring force. The pressure can be easily exchanged.

Locking of the support plunger through the slotted clamping sleeve is made by means of a ringshaped conical hydraulic piston where the locking force is transmitted by a low-friction ball shell. Unlocking of the support plunger is made by spring force.

Important notes!

Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger.

Remedy: Increase the safety factor or the number of work supports.

Work supports must only be operated with a sealed contact bolt.

In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf holdup in the area of the metallic wiper edge.

Remedy: Regular cleaning.

Operating conditions, tolerances and other data see data sheet A 0.100.

Function

The support plunger is retracted in off-position. When pressurised, the piston of the double-acting cylinder extends against an internal stop and the support plunger contacts the already clamped workpiece with spring force.

With continuing pressure increase, the conical hydraulic piston moves downwards. The support plunger will be radially locked by the slotted locking bush using a low-friction spherical shell and can then compensate load forces in axis direction.

For unclamping, hydraulic pressure will be released. The conical hydraulic piston is pushed upwards by spring force, whereby the locking of the support plunger disengages. At the same time, the return line is pressurised and the piston of the double-acting cylinder retracts the support plunger back to the off-position.

Venting port

To guarantee safe functioning, a vent port is imperative. It is important that no liquids can penetrate into the venting system.

Positive air pressure connection

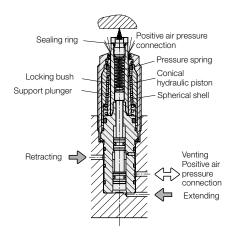
By connecting a slight overpressure of max. 0.2 bar, the venting system is effectively protected against the penetration of liquids.

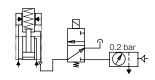
If the support plunger is retracted, the positive air pressure connection can be switched off.

Combination with clamping elements

With this combination, clamping and machining forces will add up:

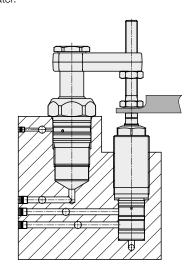
Clamping force


- + max. machining force
- = minimum support force x safety factor


Rough calculation from practice:

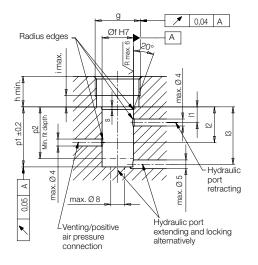
Required support force ≥ 2 x clamping force

To increase the safety, a support force as high as possible should be achieved by

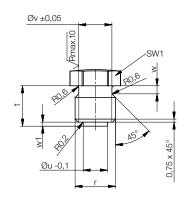

- using a larger work support
- utilising the max. operating pressure
- using a smaller clamping element or reducing the clamping pressure

Important note

The positive air pressure must be free of oil and water


Technical data Accessories • Dimensions

Part no. 1947 X10

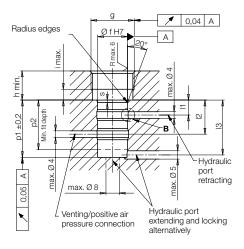

SW2

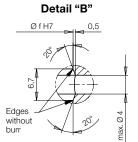
Location hole

with radiused connecting bores

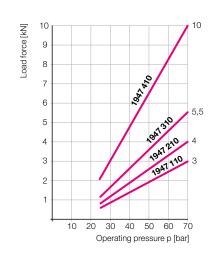
Dimensions for self-made contact bolts

Location hole

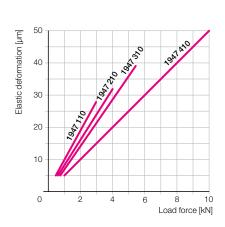

with entering slopes

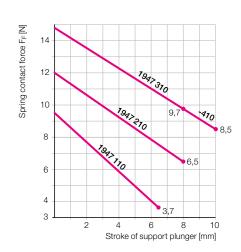

Pay attention when mounting:

The location hole must be dry and oil-free to ensure that no liquids penetrate into the spring area of the work supports.


When exchanging work supports:

To get a dry location hole, the hydraulic oil in drilled channels must be removed.




Adm. load force F As a function of the operating pressure p

Elastic deformation with load force F and operating pressure 70 bar

Spring contact force F_F as a function of the support plunger stroke h

Technical data

Support plunger Od	Adm. load force (70bar)	[kN]	3	4	5.5	10
Stroke [mm] 6.5 8 8 10 Oil volume extending retracting retracting retracting (cm²) [cm²] 0.07 1 1.1 1.1 1.9 0.33 8 25 26 25 26	Load force at p (bar)	[kN]	0.053xp-0.68	0.07xp-0.91	0.096xp-1.25	0.175xp-2.28
Dil volume extending retracting retractions retracting retractions retracting retracti	Support plunger Ød	[mm]	10	12	15	16
Recommended minimum pressure [bar] 25 25 25 25 25 25 25 2	Stroke	[mm]	6.5	8	8	10
Spring force min./max. [N] 3.79.5 7.0/12.0 9.714.8 8.5/14.8 Elastic deformation with load and 70bar with load 10bar with load				· · · · · · · · · · · · · · · · · · ·		1.9 0.35
Eastic deformation with load and 70 bar with load and 70 bar with load and 70 bar with load and 70 bar with load and 70 bar with load and 70 bar process of the persistive pro	Recommended minimum pressure	[bar]	25	25	25	25
with load and 70bar [µm/kN] 9 8 7 5 Operating temperature [°C] 070 070 070 070 Tightening torque [Nm] 32 50 63 88 L [mm] 100 107 109 120 a [mm] 64.4 71.55 68.4 80.6 b [mm] 64.4 71.55 68.4 80.6 c [mm] 47.7 52.6 47.5 60.5 e [mm] 47.7 52.6 47.5 60.5 e [mm] 7 8 8 8 8 ft [mm] 18 22 24 28 28 9 g [mm] 17.5 20.5 19 20 11 11.5 20 12 22 24 28 28 8 8 8 8 8 8 8 8 8 8 </td <td>Spring force min./max.</td> <td>[N]</td> <td>3.7/9.5</td> <td>7.0/12.0</td> <td>9.7/14.8</td> <td>8.5/14.8</td>	Spring force min./max.	[N]	3.7/9.5	7.0/12.0	9.7/14.8	8.5/14.8
Tightening torque		[µm/kN]	9	8	7	5
L [mm] 100 107 109 120 a [mm] 64.4 71.55 68.4 80.6 b [mm] 55.7 60.6 56.5 69.5 c [mm] 47.7 52.6 47.5 60.5 e [mm] 7 8 8 8 8 Øf H7/f7 [mm] 18 22 24 28 g [mm] M26x1.5 M30x1.5 M36x1.5 M45x1.5 h min. [mm] 17.5 20.5 19 20 i max. [mm] 7 8 8 8 8.5 I1 [mm] 9 10 11 11.5 11.5 2.5 23.5 22 24 I3 [mm] 9 10 11 11.5 11.5 2.5 23.5 22 23.5 24 33 33 33 33 33 33 33 33 33 </td <td>Operating temperature</td> <td>[°C]</td> <td>070</td> <td>070</td> <td>070</td> <td>070</td>	Operating temperature	[°C]	070	070	070	070
a [mm] 64.4 71.55 68.4 80.6 b [mm] 55.7 60.6 56.5 69.5 c [mm] 47.7 52.6 47.5 60.5 e [mm] 47.7 52.6 47.5 60.5 e [mm] 7 8 8 8 8 Øf H7/17 [mm] 18 22 24 28 g [mm] 18 22 24 28 g [mm] 17.5 20.5 19 20 imax. [mm] 17.5 20.5 19 20 imax. [mm] 7 8 8 8.5 II [mm] 9 10 11 11.5 12 [mm] 33 33 38 37 m [mm] 4.3 5 6.8 6 n [mm] 3.4 4 4 4	Tightening torque	[Nm]	32	50	63	80
b [mm] 55.7 60.6 56.5 69.5 c [mm] 47.7 52.6 47.5 60.5 e [mm] 47.7 52.6 47.5 60.5 e [mm] 7 8 8 8 g [mm] M26x1.5 M30x1.5 M36x1.5 M45x1.5 h min. [mm] M26x1.5 20.5 19 20 i max. [mm] 7 8 8 8.5 It [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 224 I3 [mm] 20.5 21.5 23.5 22.5 23.5 24 I3 [mm] 20.5 21.5 23.5 23.5 24 33 33 33 33 33 33 33 33 34 4 4 4 4 4 4 4 4 4 4	L	[mm]	100	107	109	120
c [mm] 47.7 52.6 47.5 60.5 e [mm] 7 8 8 8 Øf H7/f7 [mm] 18 22 24 28 g [mm] M26x1.5 M30x1.5 M36x1.5 M45x1.5 h min. [mm] 17.5 20.5 19 20 i max. [mm] 7 8 8 8.5 I1 [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 24 I3 [mm] 20.5 21.5 23.5 24 I3 [mm] 33 33 38 37 m [mm] 4.3 5 6.8 6 n [mm] 34.5 34.5 39 38.5 p [mm] 34.5 34.5 39 38.5 p [mm] 30 31 34 34	a	[mm]	64.4	71.55	68.4	80.6
e [mm] 7 8 8 8 Øf H7/F7 [mm] 18 22 24 28 g [mm] M26x1.5 M30x1.5 M36x1.5 M45x1.5 h min. [mm] 17.5 20.5 19 20 i max. [mm] 7 8 8 8.5 I1 [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 24 I3 [mm] 33 33 38 37 m [mm] 4.3 5 6.8 6 n [mm] 34.5 34.5 39 38.5 p2 [mm] 34.5 34.5 39 38.5 p2 [mm] 30 31 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 g [mm] 8 10 10 10 </td <td>b</td> <td>[mm]</td> <td>55.7</td> <td>60.6</td> <td>56.5</td> <td>69.5</td>	b	[mm]	55.7	60.6	56.5	69.5
Øf H7/f7 [mm] 18 22 24 28 g [mm] M26x1.5 M30x1.5 M36x1.5 M45x1.5 h min. [mm] 17.5 20.5 19 20 i max. [mm] 7 8 8 8.5 It [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 24 I3 [mm] 33 33 38 37 m [mm] 4.3 5 6.8 6 n [mm] 34.5 34.5 39 38.5 p2 [mm] 30 31 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 s [mm] 1.5 1.5 2 2 t [mm] 8 10 10 10 Øv [mm] 4.5 6 8.2 8.2 </td <td>С</td> <td>[mm]</td> <td>47.7</td> <td>52.6</td> <td>47.5</td> <td>60.5</td>	С	[mm]	47.7	52.6	47.5	60.5
g [mm] M26x1.5 M30x1.5 M36x1.5 M45x1.5 h min. [mm] 17.5 20.5 19 20 i max. [mm] 7 8 8 8.5 II [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 24 I3 [mm] 33 33 38 37 m [mm] 3 4 4 4 4 p1 [mm] 34.5 34.5 39 38.5 92 p2 [mm] 30 31 34 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 s [mm] 1.5 1.5 2 2 2 t [mm] 8 10 10 10 Ø v [mm] 4.5 6 8.2 8.2 w [mm] 0.5 </td <td>е</td> <td>[mm]</td> <td></td> <td>8</td> <td></td> <td>8</td>	е	[mm]		8		8
h min. [mm] 17.5 20.5 19 20 i max. [mm] 7 8 8 8.5 I1 [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 24 I3 [mm] 33 33 38 37 m [mm] 4.3 5 6.8 6 n [mm] 3.4 4 4 4 4 9 1 9 1 9 1 9 1 <	Øf H7/f7	[mm]	18	22		28
i max. [mm] 7 8 8 8.5 I1 [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 24 I3 [mm] 33 33 38 37 m [mm] 4.3 5 6.8 6 n [mm] 3.4 4 4 4 p1 [mm] 34.5 34.5 39 38.5 p2 [mm] 30 31 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 s [mm] 1.5 1.5 2 2 t [mm] 8 10 10 10 Øu [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 1	g	[mm]	M26x1.5	M30x1.5	M36x1.5	M45x1.5
III [mm] 9 10 11 11.5 I2 [mm] 20.5 21.5 23.5 24 I3 [mm] 33 33 38 37 m [mm] 4.3 5 6.8 6 n [mm] 3 4 4 4 4 p1 [mm] 34.5 34.5 39 38.5 39 38.5 39 38.5 39 38.5 39 38.5 34.5 39 38.5 30	h min.	[mm]	17.5	20.5	19	20
2	i max.	[mm]				8.5
13		[mm]				11.5
m [mm] 4.3 5 6.8 6 n [mm] 3 4 4 4 p1 [mm] 34.5 34.5 39 38.5 p2 [mm] 30 31 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 s [mm] 1.5 1.5 2 2 t [mm] 8 10 10 10 Ø u [mm] 3.1 5 6 6 Ø v [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 1 SW1 [mm] 8 10 11 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 2 24 30 36		[mm]				24
n [mm] 3 4 4 4 4 p1 [mm] 34.5 34.5 39 38.5 p2 [mm] 30 31 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 s [mm] 1.5 1.5 2 2 t [mm] 8 10 10 10 Ø u [mm] 3.1 5 6 6 Ø v [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 1 SW1 [mm] 8 10 11 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5	13					37
p1 [mm] 34.5 34.5 39 38.5 p2 [mm] 30 31 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 s [mm] 1.5 1.5 2 2 t [mm] 8 10 10 10 Ø u [mm] 3.1 5 6 6 Ø v [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 SW1 [mm] 8 10 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8	m			5		6
p2 [mm] 30 31 34 34 r thread in the support plunger x depth M6x10 M8x11 M10x11 M10x11 s [mm] 1.5 1.5 2 2 t [mm] 8 10 10 10 Øu [mm] 3.1 5 6 6 Øv [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 SW1 [mm] 8 10 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8						4
r thread in the support plunger x depth						38.5
s [mm] 1.5 1.5 2 2 t [mm] 8 10 10 10 Ø u [mm] 3.1 5 6 6 6 Ø v [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 2 w1 [mm] 0.5 1 1 1 1 1 SW1 [mm] 8 10 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8		[mm]				34
t [mm] 8 10 10 10 Ø u [mm] 3.1 5 6 6 Ø v [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 1 SW1 [mm] 8 10 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8	r thread in the support plunger x depth					
Ø u [mm] 3.1 5 6 6 Ø v [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 1 SW1 [mm] 8 10 11 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8						2
Ø v [mm] 4.5 6 8.2 8.2 w [mm] 1.5 2 2 2 w1 [mm] 0.5 1 1 1 1 SW1 [mm] 8 10 11 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8						10
w [mm] 1.5 2 2 2 2 w1 [mm] 0.5 1 1 1 1 SW1 [mm] 8 10 11 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8						6
w1 [mm] 0.5 1 1 1 SW1 [mm] 8 10 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8	Øv					
SW1 [mm] 8 10 11 11 SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8						2
SW2 [mm] 8 10 13 13 SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8						1
SW3 [mm] 22 24 30 36 Weight, approx. [kg] 0.25 0.4 0.5 0.8						11
Weight, approx. [kg] 0.25 0.4 0.5 0.8						13
						36
Part no. 1947 110 1947 210 1947 310 1947 410		[kg]				0.8
	Part no.		1947 110	1947210	1947310	1947410

with metallic wiper edge, shaft length 20 - 100 mm single and double acting, max. operating pressure 70 bar

Advantages

- Load force up to 3 kN at 70 bar
- Side load up to 0.3 kN admissible
- Space-saving threaded-body version
- Support in recesses and cavities
- Shaft lengths up to 100 mm available
- High process safety by double-acting function
- Workpiece contact by spring force
- Metallic wiper edge
- Protected FKM wiper
- Inner parts protected against corrosion
- Venting of the spring area
- Connection of positive air pressure protection possible
- Installed orifices for flow rate limitation
- Mounting position: any

Application

Hydraulic work supports are used to provide a self-adjusting rest for workpieces and avoid their vibration and deflection under machining loads. This series offers high support forces already at 70 bar and can directly be connected to the low-pressure hydraulics of the machine tool.

The selectable extension with a shaft diameter of only 16 mm enables the support of surfaces in recesses and cavities that otherwise would be inaccessible.

In case of the double-acting version, the return stroke of the support plunger is effected in a precisely defined time, that is above all advantageous in cycle-dependent installations.

Description

The support plunger is hydraulically extended and retracted by means of a small single or double-acting cylinder. Contact to the workpiece is made by spring force. The pressure spring can be easily exchanged.

The support plunger is additionally guided in the area of the shaft diameter and can therefore absorb side loads up to 300 N.

Important notes

The admissible load force is valid for static or dynamic load. The support plunger must not be stressed by tensile load.

Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger.

Remedy: increase the safety factor or the number of work supports.

Work supports must only be operated with a sealed contact bolt.

In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf holdup in the area of the metallic wiper edge.

Remedy: regular cleaning.

rionioay. rogalar oloariing.

Operating conditions, tolerances and other data see data sheet A 0.100.

Function

The support plunger is retracted in off-position. When pressurised, the piston of the single or double-acting cylinder extends against an internal stop and the support plunger contacts the already clamped workpiece with spring force.

With continuing pressure increase, the conical hydraulic piston moves downwards. The support plunger will be radially locked by the slotted locking bush using a low-friction spherical shell and can then absorb load forces in axis direction.

For unclamping, hydraulic pressure will be released. The conical hydraulic piston is pushed upwards by spring force, whereby the locking of the support plunger disengages.

The single-acting piston retracts the support plunger with spring force to its off-position.

This takes place quicker with the double-acting version.

Venting port

To guarantee safe functioning, a vent port is imperative.

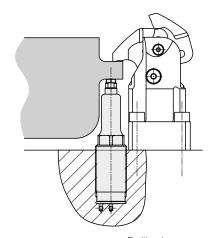
Positive air pressure connection

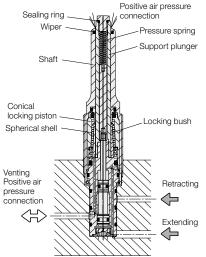
By connecting a slight overpressure of max. 0.2 bar, the venting system is effectively protected against the penetration of liquids.

Combination with clamping elements

In the above example the machining force is to be added to the clamping force of the compact clamp:

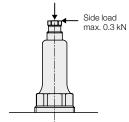
clamping force

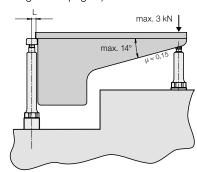

- + max. machining force
- = minimum support force x safety factor


Rough calculation from practice:

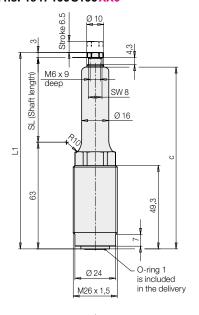
Required support force ≥ 2 x clamping force

To increase the safety, a support force as high as possible should be achieved by

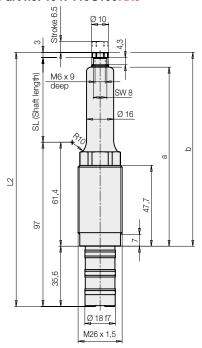

- using a larger work support
- utilising the max. operating pressure
- using a smaller clamping element or reducing the clamping pressure


Admissible loads

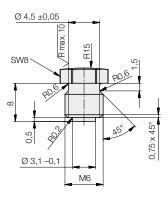
Max. load force up to 3 kN


Example

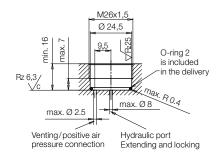
Load of the support plunger by side loads (see diagram on page 3)

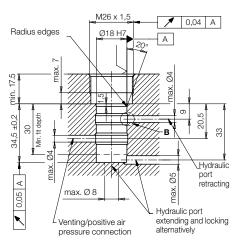

Single acting

Part no. 1947 100 S106 XX0

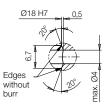


double acting


Part no. 1947110S106XX0

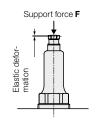


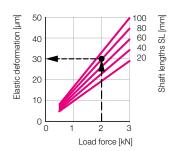
Dimensions for self-made contact bolts



Location holes

Detail B




Admissible load F as a function of the operating pressure p

Elastic deformation with load force F and operating pressure 70 bar for shaft lengths 20 – 100 mm

Example

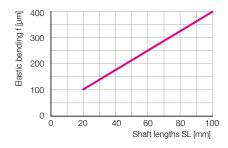
Work support 1947 110S 106 080

Operating pressure p = 70 barLoad force F = 2 kNShaft length SL = 80 mm

As per diagram:

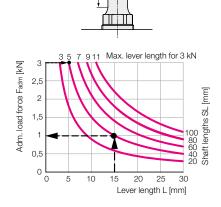
Elastic deformation approx. 30 µm

Technical data


Adm. load for	rce (70 bar)		[kN]	3
Load force F at	t p (bar)		[kN]	$0.053 \times p - 0.68$
Support plunge	er Ød		[mm]	10
Stroke			[mm]	6.5
Oil volume	extending	single acting	[cm ³]	0.6
	extending	double acting	[cm ³]	0.7
	retracting	double acting	[cm ³]	0.07
Recommended	d minimum pressu	ıre	[bar]	25
Max. pressure	in return line	single acting	[bar]	1
		double acting	[bar]	2.5
Spring force m	in./max.		[N]	3.7/9.5
Elastic deforma	ation		[LIM /LAN]	(SL + 31) + 5.33
Load force F at	t 70 bar		[µm/kN]	11.7
Operating temp	perature		[°C]	070
Tightening torq	que		[Nm]	32
SL (available sh	haft lengths)		[mm]	20 30 40 50 60 70 80 90 100
L1	,		[mm]	SL+ 66
L2			[mm]	SL + 100
а			[mm]	SL + 55.7
b			[mm]	SL + 64.4
С			[mm]	SL + 57.3
Single acting				Part no.
Shaft lengths			[mm]	1947100S106020
Shaft lengths			[mm]	1947100S106030
Shaft lengths	40		[mm]	1947100S106040
Shaft lengths			[mm]	1947100S106050
Weight, approx	X.		[kg]	0.27 up to 0.32
Double acting	a			Part no.
Shaft lengths			[mm]	1947110S106020
Shaft lengths			[mm]	1947110S106030
-	40		[mm]	1947110S106040
Shaft lengths	50		[mm]	1947110S106050
Shaft lengths			[mm]	1947110S106060
Shaft lengths			[mm]	1947110S106070
Shaft lengths	80		[mm]	1947110S106080
Shaft lengths			[mm]	1947110S106090
Shaft lengths 1			[mm]	1947110S106100
Weight, approx	Χ.		[kg]	0.32 up to 0.37
Spare parts				Part no.
	x 1.78 (single acti	ng)		3001 013
	x 1.78 (single acti			3002 170
	nal seals (double a			0132 927
,	,	<u>.</u>		Article available on request

Article available on request

On request, we will check whether the article is still available.


Elastic bending f at the admissible side load of 0.3 kN and an operating pressure of 70 bar as a function of the shaft length SL

Adm. load force Fadm at an operating pressure of 70 bar as a function of lever length L and the shaft length SL

Fadm.

Example

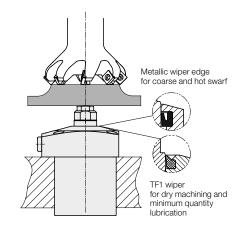
Work support 1947 110S 106040

Operating pressure p = 70 bar Lever length L = 15 mm Shaft length SL = 40 mm

As per diagram: Adm. load 1 kN

Up to which lever length can the work support absorb the max. side load of 3 kN?

As per diagram: max. lever length 5 mm


Work Supports

Top flange type, metallic wiper edge or TF1 wiper single acting, max. operating pressure 70 bar

Advantages

- Load force up to 25 kN
- Space-saving version
- 2 sizes available
- Alternatively metallic wiper edge or TF1 wiper
- Contact force of the support plunger selectable
- Inner parts protected against corrosion
- Alternatively pipe thread or drilled channels
- Flow control valve available as accessory
- Connection for venting and positive air pressure protection
- Mounting position: any
- Connection of positive air pressure protection up to 4 bar is possible

Pipe thread

forces will add up:

Clamping force

+ max. machining force

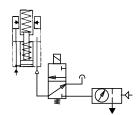
Application

Hydraulic work supports are used to provide a self-adjusting rest for workpieces and avoid their vibration and deflection under machining loads. This series offers very high support forces already at 70 bar and can directly be connected to the low-pressure hydraulic of the machine tool. Due to their compact design they can be arranged in a very limited space. Oil supply is made through drilled channels or pipe thread.

Description

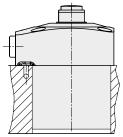
The support plunger is hydraulically extended by a small piston and contacts the workpiece with spring force. The contact spring can be easily exchanged.

Locking of the support plunger is made through the slotted clamping sleeve and by means of a ring-shaped conical hydraulic piston where the locking force is transmitted by a low-friction ball shell

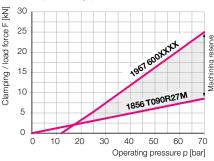

Unlocking and retracting of the support plunger is made by spring force.

Positive air pressure connection

To guarantee functioning of the work supports, a vent port is imperative. No liquids may enter the end of the bore hole (see also data sheet G 0.110 "Venting of the spring area").


It is recommended to connect positive air pressure protection. While locking the support plunger, the positive air pressure must not exceed 4 bar. If the support plunger is not locked, the positive air pressure must be reduced to a maximum of 0.2 bar.

The positive air pressure connection must be free of oil and water.



Connection of positive air pressure protection

Installation and connecting possibilities Drilled channels

Clamping / load force as a function of the operating pressure

W .

= minimum support force x safety factor Rough calculation from practice: Required support force ≥ 2 x clamping force To increase the safety, a support force as high as possible should be achieved by • using a larger work support

Combination with clamping elements

With this combination, clamping and machining

- utilising the max. operating pressure
- using a smaller clamping element or reducing the clamping pressure

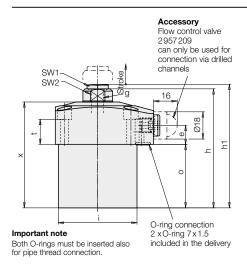
Important notes

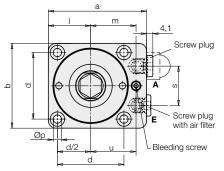
Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load.

The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger.

Operating conditions, tolerances and other data see data sheet A 0.100

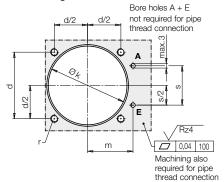
Example

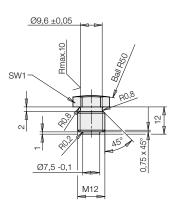

Work support 1967 600 XXXX max. load force at 70 bar and


swing clamp 1856T090R27M as per data sheet B 1.8500

- Effective clamping force at 70 bar 8.3 kN
- = Reserve for machining force 16.7 kN

25.0 kN


Dimensions Technical data • Accessories



A = hydraulics G1/8E = venting or positive air pressure connection G1/8

Connecting scheme

Dimensions for self-made contact bolts

Max. load force at 70 bar	[kN]	15.5	25
Load force at p (bar)	[kN]	0.272 x p-3.54	0.439 x p-5.70
Support plunger ØD	[mm]	20	22
Stroke	[mm]	12	14
Required oil per stroke	[cm ³]	3.5	5
Admissible flow rate	[cm ³ /s]	25	25
Recommended minimum pressure	[bar]	25	25
Max. pressure in the return line	[bar]	1	1
Elastic deformation with load and 70 bar	[µm/kN]	2.5	2.5
Operating temperature	[°C]	070	070
a	[mm]	65	75
b	[mm]	56	65
d	[mm]	44	52
е	[mm]	12.5	12.5
g x depth	[mm]	M12x12	M12x12
h	[mm]	78.7	97
h1	[mm]	81.7	102
Øi	[mm]	52 -0.2	60 -0.2
Øk	[mm]	52 +0.3/+0.1	60 + 0.3/+ 0.1
I	[mm]	28	32.5
m	[mm]	30	33.5
0	[mm]	42	57
Øp	[mm]	5.5	6.5
r		M5	M6
Tightening torque	[Nm]	5.9	10
S	[mm]	26	30
t	[mm]	16.5	15.9
u	[mm]	30	36
x	[mm]	70	87
SW1	[mm]	14	14
SW2	[mm]	17	19
Wiper and metallic wiper edge		M	M
Plunger contact force min./max.	[N]	4/14	4/12
Part no.		1967500 <mark>M</mark> 112	1967600 <mark>M</mark> 114
Plunger contact force min./max.	[N]	11 / 17	10/15

Wiper and metalic wiper edge	IVI	IVI
Plunger contact force min./max. [N]	4/14	4/12
Part no.	1967500M112	1967600 <mark>M</mark> 114
Plunger contact force min./max. [N] Part no.	11/17 1967500M312	10/15 1967600M314
Plunger contact force min./max. [N]	12/28	16/28
Part no.	1967500M512	1967600 <mark>M</mark> 514
TF1 wiper	В	В
Plunger contact force min./max. [N] Part no.	11/17 1967500B312	10/15 1967600 B 314
Plunger contact force min./max. [N]	12/28	16/28

Accessory

Part no.

Flow control valve G 1/8	2957 209	2957 209
Screw plug G 1/8	3610158	3610158

Connecting possibilities (see page 1)

1. Pipe thread

1.1 Dry environment

Port E: Screw plug with air filter

1.2 Wet environment

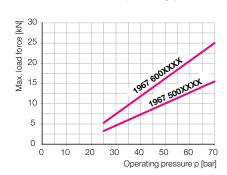
Port E: Fitting G1/8 with pipe laid in a dry place

2. Drilled channels

2.1 Wet environment

Port A: Screw plug G1/8 or flow control valve 2957 209 (accessory)

Port E: Screw plug with air filter


2.2 Wet environment

Port A: see 2.1

Port E: Screw plug G 1/8 3610 158 (accessory)

Adm. load force F as a function of the operating pressure p

1967500B512

1967600B514

max. operating pressure 500 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also deflection and vibration under machining loads.

Function

Hydraulic locking is made together with hydraulic clamping of the workpiece, or independently. Three different sizes are available. Each of these

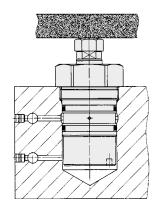
Three different sizes are available. Each of these can be combined with swing clamps as per data sheet B 1.881 or B 1.892 (see combination possibilities).

Installation

The threaded-body design of the elements allows direct installation in clamping fixtures, in horizontal or vertical mounting position, and thereby a space-saving arrangement. Hydraulic oil is fed through drilled channels in the fixture body.

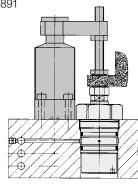
Important note!

Work supports are not suitable to compensate side loads.

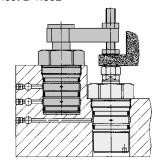

Operating conditions, tolerances and other data see data sheet A 0.100.

It is absolutely necessary to follow the instructions for venting of the spring area on data sheet G 0.110.

There are three variations of plunger actuation:

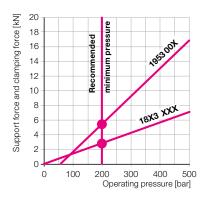

- **1. Spring advanced;** plunger extended in off-position (see page 2).
- **2. Air pressure advanced;** plunger retracted in off-position. The pneumatically-actuated plunger allows precise setting of the plunger contact force by means of a pressure reducing valve (see page 3).
- **3. Hydraulic pressure and spring advanced;** plunger retracted in off-position It moves forward with a light spring force against the workpiece, when hydraulic pressure is applied (see page 4).

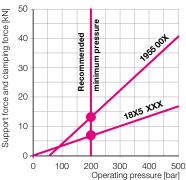
Installation example

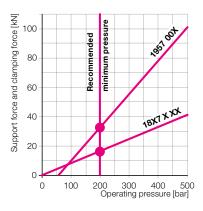


Combination possibilities

Threaded-body work support combined with flange-mounted swing clamps as per data sheet B 1.891

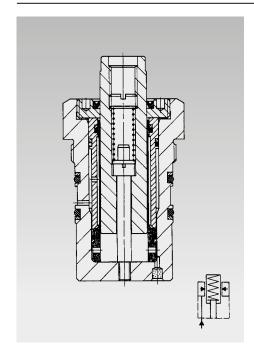

Threaded-body work support combined with threaded-body swing clamps as per data sheet B 1.892




Important note

Support and clamping forces have to be adapted to each other, so that there will be sufficient force reserve available for the threaded-body work support to absorb the machining forces.

Thumb rule: Support force ≥ 2 x opposing force The diagrams below show the graphs of the clamping and support forces for the 3 possible combinations.


Example

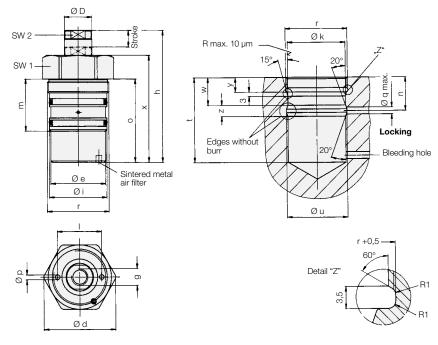
Swing clamps 1895506 clamps against threaded-body work support 1955002. Operating pressure 200 bar.

Support force 14 kN Clamping force – 7 kN

7 kN = possible opposing force

Version: off-position extended, contact by spring force max. operating pressure 500 bar

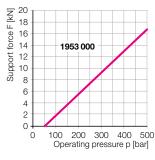
The support plunger is extended in off-position.

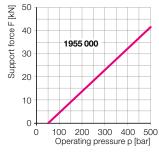

When the workpiece is inserted the plunger is pushed back. The contact force of the installed pressure spring depends on the stroke of the plunger. Afterwards the plunger is hydraulically locked.

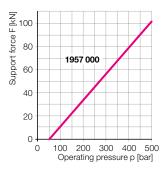
The support plunger is provided with female thread to enable the use of threaded pieces for height adjustment.

The internal part of the work support is protected against dust and swarf by a sintered metal air filter. Liquids must not be sucked in by the filter. A corresponding protection cover has to be provided.

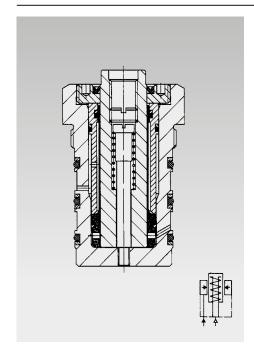
It is absolutely necessary to follow the instructions for venting of the spring area on data sheet G 0.110.

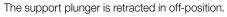

The support plunger must always be protected against penetration of contamination by a contact bolt (see accessory) or a plug.



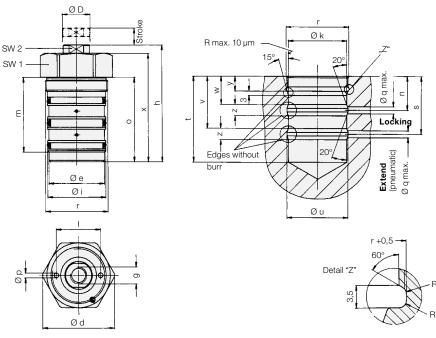

Plunger Ø D	[mm]	20	32	50
Stroke	[mm]	12	16	20
Support force at 200/500 bar	[kN]	5.6/16.8	14/42	34/102
Plunger contact force min./ max.	[N]	15/25	30/60	50/100
Ød	[mm]	52	64	100
Øe	[mm]	41	53	83
g x depth of thread	[mm]	M12x12	M12x12	M16x20
h	[mm]	95	119	174
Ø i f7	[mm]	42	55	85
Ø k H7	[mm]	42	55	85
I	[mm]	_	_	86
m	[mm]	36	45	60
n	[mm]	24	29	41
0	[mm]	60	66	126
Ø p / deep	[mm]	_	_	8/9
Ø q max.	[mm]	5	5	6
r	[mm]	M45x1.5	M60x1.5	M90x2
t	[mm]	61	67	127
Øu	[mm]	44	57	87
W	[mm]	20	24	36
X	[mm]	77	99	146
у	[mm]	10.5	12.5	20.5
Z	[mm]	8	10	10
SW 1	[mm]	46	55	95
SW 2	[mm]	17	27	41
Part no.		1953000	1955000	1957000*
Spare seals – Seal kit for external seals		0131 525	0131527	0131 529
Accessory – Contact bolt, dome head as per data sheet G 3.800		3614028	3614028	3614003

^{*} with metallic wiper edge


Adm. support force F as function of the operating pressure p

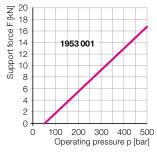


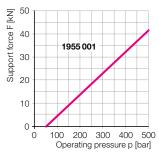
Version: extend and contact by air pressure max. operating pressure 500 bar

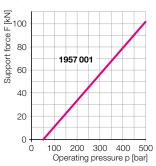


The pneumatically-actuated plunger allows precise setting of the plunger contact force by means of a pressure reducing valve.

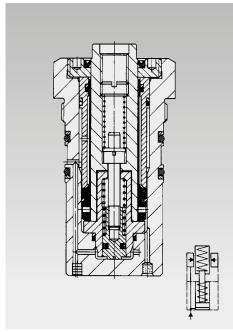
The support plunger is provided with female thread to enable the use of threaded pieces for height adjustment.


The support plunger must always be protected against penetration of contamination by a contact bolt (see accessory) or a plug.




Spare seals – Seal kit for external seals Accessory – Contact bolt, dome head as per data sheet G 3.800		0131 524 3614028	0131 526 3614 028	0131 528 3614 003
Part no		1953001	1955001	1957001*
SW 2	[mm]	17	27	41
SW 1	[mm]	46	55	95
Z	[mm]	8	10	10
У	[mm]	10.5	12.5	20.5
X	[mm]	77	99	146
W	[mm]	20	24	36
V	[mm]	37	41.5	59
Øu	[mm]	44	57	87
t	[mm]	61	67	127
S	[mm]	41	46.5	64
r	[mm]	M45x1.5	M60x1.5	M90x2
Ø q max.	[mm]	5	5	6
Ø p / deep	[mm]	-	-	8/9
0	[mm]	60	66	126
n	[mm]	24	29	41
m	[mm]	53	64	85
	[mm]	_	_	86
Ø k H7	[mm]	42	55	85
Ø i f7	[mm]	42	55	85
h	[mm]	83	103	154
g x depth of thread	[mm]	M12x12	M12x12	M16x20
Ø e	[mm)	41	53	83
(deduct spring force, if necessary) Ø d	[N] [mm]	31 52	80 64	196 100
Spring force min./max. Plunger contact force at 1 bar air pressur	[N]	15/25	30/60	50/100
Support force at 200/500 bar	[kN]	5.6/16.8	14/42	34/102
Stroke	[mm]	12	16	20
Plunger Ø D	[mm]	20	32	50

^{*} with metallic wiper edge


Adm. support force F as function of the operating pressure p

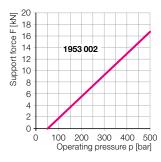
Version: extending hydraulically, contact by spring force max. operating pressure 500 bar

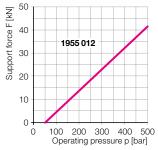

When pressurised the support plunger moves

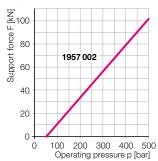
against the inserted workpiece by means of light spring force. The contact force of the installed pressure spring depends on the stroke of the plunger. With increasing oil pressure, the plunger locks hydraulically.

After the system has been unclamped, the support plunger returns to off-position. The support plunger is provided with female thread to enable the use of threaded pieces for height adjustment. The internal part of the work support is protected against dust and swarf by a sintered metal air filter. Liquids must not be sucked in by the filter. A corresponding protection cover has to be provided.

It is absolutely necessary to follow the instructions for venting of the spring area on data sheet G $\,$ 0.110.


The support plunger must always be protected against penetration of contamination by a contact bolt (see accessory) or a plug.




Plunger Ø D	[mm]	20	32	50
Stroke	[mm]	12	16	20
Support force at 200/500 bar	[kN]	5.6/16.8	14/42	34/102
Plunger contact force min./max.	[N]	15/25	30/60	50/100
Max. oil flow rate	[cm ³ /sec]	25	35	100
Required oil per stroke	[cm ³]	1.0	3.3	9.8
Ød	[mm]	52	64	100
Øe	[mm]	41	53	83
g x depth of thread	[mm]	M12x12	M12x12	M16x20
h	[mm]	98	120	172
Øif7	[mm]	42	55	85
Ø k H7	[mm]	42	55	85
I	[mm]	_	_	86
m	[mm]	36	45	60
n	[mm]	24	29	41
0	[mm]	75	83	144
Ø p/deep	[mm]	_	_	8/9
Ø q max.	[mm]	5	5	6
r	[mm]	M45x1.5	M60x1.5	M90x2
t	[mm]	76	84	145
Øu	[mm]	44	57	87
W	[mm]	20	24	36
X	[mm]	92	116	164
У	[mm]	10.5	12.5	20.5
Z	[mm]	8	10	10
SW 1	[mm]	46	55	95
SW 2	[mm]	17	27	41
Part no.		1953002	1955012	1957002*
Spare seals - Seal kit for external :	seals	0131525	0131 527	0131529
Accessory - Contact bolt, dome he as per data sheet G 3		3614028	3614028	3614003

^{*} with metallic wiper edge

Adm. support force F as function of the operating pressure p

with metallic wiper edge, 3 sizes, 3 types of function, single acting, max. operating pressure 500 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also vibration and deflection under machining loads.

The threaded-body design allows for spacesaving and direct installation into the fixture body. Oil supply is made through drilled channels.

Description

In the body of the threaded-body work support a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

The elements are protected against penetration of swarf by a metallic wiper edge and sealed against liquids. The venting port allows also the connection of positive air pressure protection.

Important notes

Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load. The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger.

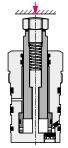
Operating conditions, tolerances and other data see data sheet A 0.100.

Positive air pressure connection

To guarantee functioning of the work supports, a vent port is imperative. No liquids may enter the end of the bore hole (see also data sheet G 0.110 "Venting of the spring area").

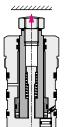
It is recommended to connect positive air pressure protection. While locking the support plunger, the positive air pressure must not exceed 4 bar. If the support plunger is not locked, the positive air pressure must be reduced to a maximum of 0.2 bar.

The positive air pressure connection must be free of oil and water.

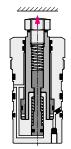

Advantages

- Space-saving threaded-body version
- 3 sizes
- 3 types of function
- Contact force by spring or pneumatically adjustable (195X021)
- Load force up to 100 kN
- Venting for spring area universally connectable
- Metallic wiper edge and FKM wiper
- Connection of positive air pressure protection is possible
- Support plunger and interior parts protected against corrosion
- Connection of positive air pressure protection up to 4 bar is possible

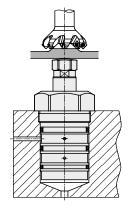
Types of function


1. Spring advanced

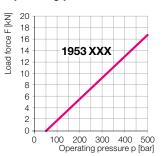
Page 2

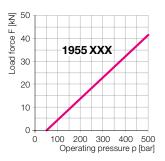

2. Air pressure advanced

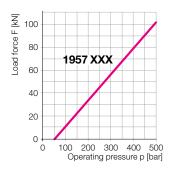
Page 3

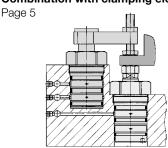


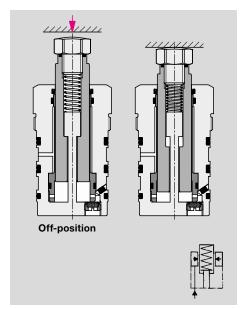
3. Hydraulic pressure and spring advanced


Page 4




Connection of positive air pressure protection


Admissible load force as a function of the operating pressure

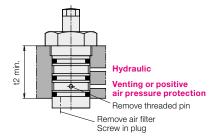


Combination with clamping elements

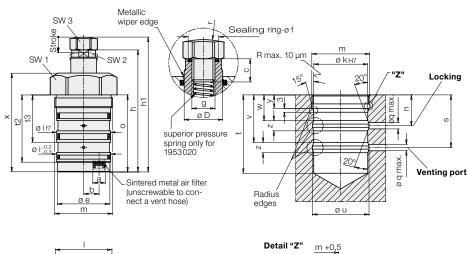
off-position extended, contact by spring force

The support plunger is pushed back by the inserted workpiece, the spring force has to be overcome.

The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.

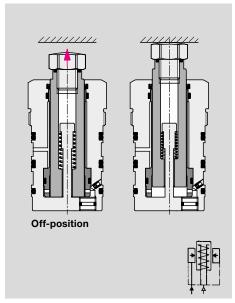

After unclamping the support plunger contacts still the workpiece with spring force, until the workpiece will be unloaded from the fixture.

1. Venting via pocket hole


Venting or positive air pressure protection

2. Venting via drilled channels

3. Venting via hoses

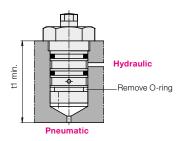

Support plunger Ø D	[mm]	20	32	50
Stroke	[mm]	12	16	20
Load force at 200/500 bar	[kN]	5.6/16.8	14/42	34/102
Plunger contact force min./max.	[N]	15/25	30/60	50/100
Elastic deformation at 500 500 bar*	[mm/kN]	0.004	0.003	0.002
a	[mm]	G 1/8	G 1/8	G 1/4
b	[mm]	12	18	30.5
C	[mm]	12	12	20
Ød	[mm]	52	64	100
Øe	[mm]	41	53	83
Øf	[mm]	15.9	15.9	19.6
g	[mm]	M12	M12	M16
ĥ	[mm]	95	119	174
h1	[mm]	105	129	184
Øif7	[mm]	42	55	85
Ø k H7	[mm]	42	55	85
	[mm]	_	_	86
m	[mm]	M45x1.5	M60x1.5	M90x2
n	[mm]	24	29	41
0	[mm]	60	66	126
Ø p / deep	[mm]	_	_	8/9
Ø q max.	[mm]	5	5	6
r	[mm]	45	45	60
S	[mm]	41	46.5	64
t	[mm]	61	67	127
t1	[mm]	75	85	155
t2	[mm]	52	58	80
t3	[mm]	36	43	60
Øu	[mm]	44	57	87
V	[mm]	37	41.5	59
W	[mm]	20	24	36
X	[mm]	77	99	146
у	[mm]	10.5	12.5	20.5
Z	[mm]	8	10	10
SW 1	[mm]	46	55	95
SW 2	[mm]	17	27	41
SW 3	[mm]	19	19	24
Part no.		1953020	1955020	1957020
Spare seals - Seal kit for external seals		0132384	0132385	0132386
Spare sealing ring for contact bolt		3001731	3001731	3002018
Accessory for venting				
Type of venting 1** Air filter		3302008	3302008	3302009

Accessory for venting				
Type of venting 1**	Air filter	3302008	3302008	3302009
	Threaded pin M3x4	3301 461	3301461	3301 461
Type of venting 2	Plug	0361 986	0361986	0361987
Type of venting 3	Connecting nipple	3890092	3890092	3890093
Type of venting 5	Plastic hose	3890131	3890131	3890131

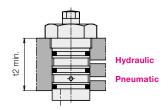
^{*} during load

^{**} Included in the delivery

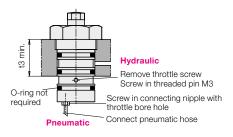
extend and contact by air pressure

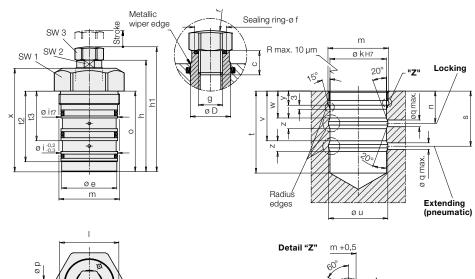


The support plunger contacts the workpiece by air pressure. The contact force is proportional to the air pressure less spring return force.

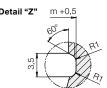

The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.

For unclamping hydraulic and air pressure will be released and the support plunger retracts by spring force to its off-position.


1. Pneumatic via pocket hole



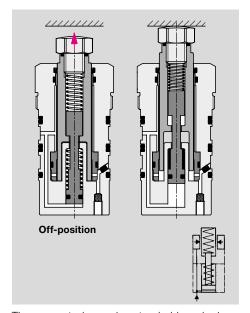
2. Pneumatik über gebohrte Kanäle



3. Pneumatic via hoses

0	o d
oort	plunger Ø D

Support plunger Ø D	[mm]	20	32	50
Stroke	[mm]	12	16	20
Load force at 200/500 bar	[kN]	5,6/16,8	14/42	34/102
Spring force min./max.	[N]	15/25	30/60	50/100
Plunger contact force at 1 bar air pressure	[1.4]	04	00	100
(deduct spring force if necessary)	[N]	31	80	196
Elastic deformation at 500 bar*	[mm/kN]	0,004	0,003	0.002
a	[mm]	G 1/8	G 1/8	G 1/4
b	[mm]	12	18	30,5
C	[mm]	12	12	20
Ød	[mm]	52	64	100
Øe	[mm]	41	53	83
Øf	[mm]	15,9	15,9	19,6
g	[mm]	M12	M 12	M16
h	[mm]	83	103	154
h1	[mm]	93	113	164
Øif7	[mm]	42	55	85
Ø k H7	[mm]	42	55	85
	[mm]	_	_	86
m	[mm]	M45x1,5	M60x1,5	M90x2
n	[mm]	24	29	41
0	[mm]	60	66	126
Øp/deep	[mm]	_	_	8/9
Ø q max.	[mm]	5	5	6
r	[mm]	45	45	60
S	[mm]	41	46,5	64
t	[mm]	61	67	127
t1	[mm]	75	85	155
t2	[mm]	52	58	80
t3	[mm]	36	43	60
Øu	[mm]	44	57	87
V	[mm]	37	41,5	59
W	[mm]	20	24	36
X	[mm]	77	99	146
У	[mm]	10,5	12,5	20,5
Z	[mm]	8	10	10
SW 1	[mm]	46	55	95
SW 2	[mm]	17	27	41
SW 3	[mm]	19	19	24
Part no.		1953021	1955021	1957021
Spare seals - Seal kit for external seals		0132384	0132385	0132386
Spare sealing ring for contact bolt		3001731	3001731	3002018
Accessmention				

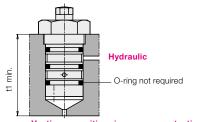

Accessory for venting 0361987 0361986 0361986 Type of venting 1+2** Throttle screw 3610151 3610150 3610154 3890191 Connecting nipple 3890190 3890192 3301 461 Type of venting 3 Threaded pin M3x4 3301461 3301461 Plastic hose 3890131 3890131 3890131

^{*} during load

^{**} Included in the delivery

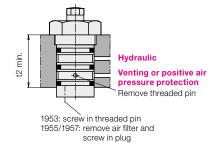
Type of function: Hydraulic pressure and spring advanced

extending hydraulically, contact by spring force

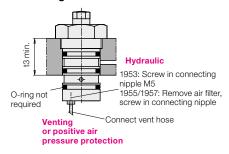


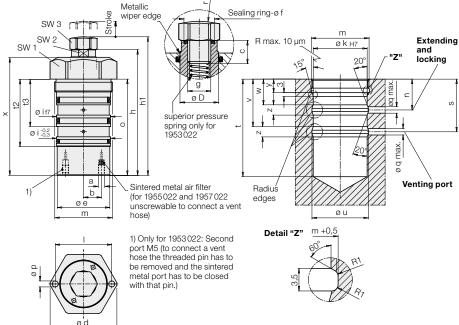
The support plunger is extended by a hydraulically pressurised small piston and contacts the workpiece with spring force.

The support plunger will be locked by the increasing hydraulic pressure and can compensate forces in axis direction.


For unclamping hydraulic pressure will be released. The small piston retracts by spring force to its off-position and also retracts the support plunger.

1. Venting via pocket hole




Venting or positive air pressure protection

2. Venting via drilled channels

3. Venting via hoses

ød	-				
Support plunger Ø D)	[mm]	20	32	50
Stroke		[mm]	12	16	20
Load force at 200/5	00 bar	[kN]	5.6/16.8	14/42	34/102
Plunger contact force	e min./max.	[N]	15/25	30/60	50/100
Admissible oil flow ra	te	[cm ³ /sec]	25	35	100
Required oil per strok	е	[cm ³]	1.0	3.3	9.8
Elastic deformation a	t 500 bar*	[mm/kN]	0.004	0.003	0.002
a		[mm]	M5	G 1/8	G 1/4
b		[mm]	14	18	30.5
C		[mm]	12	12	20
Ød		[mm]	52	64	100
Øe		[mm]	41	53	83
Øf		[mm]	15.9	15.9	19.6
g		[mm]	M 12	M12	M16
h		[mm]	98	120	172
h1		[mm]	108	130	182
Øif7		[mm]	42	55	85
Ø k H7		[mm]	42	55	85
		[mm]		_ 	86
m		[mm]	M45x1.5	M60x1.5	M90x2
n		[mm]	24	29	41
O On / door		[mm]	75 -	83	144 8/9
Ø p / deep		[mm]	5	_ 5	6
Ø q max.		[mm]	45	45	60
r		[mm] [mm]	41	46.5	64
t		[mm]	76	84	145
t1		[mm]	90	102	172
t2		[mm]	52	58	80
t3		[mm]	36	43	60
Øu		[mm]	44	57	87
V		[mm]	37	41.5	59
W		[mm]	20	24	36
X		[mm]	92	116	164
У		[mm]	10.5	12.5	20.5
Z		[mm]	8	10	10
SW 1		[mm]	46	55	95
SW 2		[mm]	17	27	41
SW 3		[mm]	19	19	24
Part no.			1953022	1955022	1957 022
Spare seals - Seal l	kit for external seals		0132384	0132385	0132386
Spare sealing ring	for contact bolt		3001731	3001 731	3002018
Accessory for vent					
Type of venting 1**	Air filter		3302008	3302008	3302009
71	modada piiman i		3301 461	3301 461	3301 461
Type of venting 2	Threaded pin M5x6 Plug		3301 300	0361 986	0361987
	Connecting nipple		3890091	3890 092	3890093
Type of venting 3	Plastic hose		3890131	3890131	3890131
* during load *	* Included in the delive	ery			

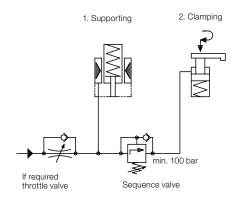
Combination with clamping elements

Dimensioning of the load force of work supports

The admissible load force of work supports has always to be dimensioned so that the clamping force of the used clamping elements and the static and dynamic machining forces can be safely compensated.

- Admissible load force
- Clamping force
- Safety (reserve)
- = Possible machining force

If the total of all occuring forces exceeds the admissible load force, the support plunger of the work support will be pushed back and the work support will be damaged.


Ratio of load force to clamping force

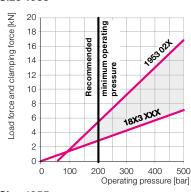
On principle the load force of the work supports should be at least twice the clamping force of the clamping elements.

Load force ≥ 2 x clamping force

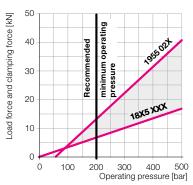
Clamping onto the work support Control of clamping sequence

The sequence – supporting and clamping – has to be controlled as a function of the pressure, e.g. by a sequence valve.

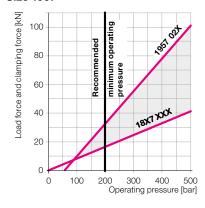
The sequence valve has to be adjusted to an opening pressure above the intersection of the two straight lines in the diagram.


If due to a too high flow rate a throttle valve is required, installation should be made as shown in the hydraulic circuit diagram.

Combinations work supports with swing clamps of the same size

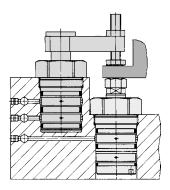

To get a load force twice the clamping force, for all 3 sizes of work supports an operating pressure of at least 200 bar is required.

The vertical distance of the two straight lines in the area of the colorised surface indicates the resulting maximally possible machining force including reserve.


Size 1953

Size 1955

Size 1957



Important note

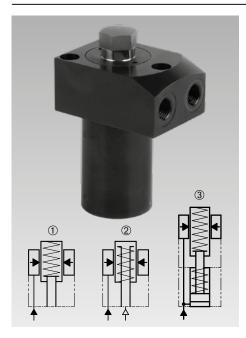
The admissible load forces as per the diagram are static. The machining forces can also generate vibrations which exceed by far the mean value. For this reason a corresponding safety factor has to be taken into account.

Example

The threaded-body swing clamp 1895101 (data sheet B 1.892) clamps a workpiece onto the work support 1955022.

For size 1955 the following can be taken from the diagram:

Minimum operating pressure:	200	bar
Load force at 200 bar:	14	kΝ
Clamping force at 200 bar:	7	kΝ


Possible machining force at 200 bar:

Admissible load force:	14 kN
- Clamping force:	– 7 kN
= Possible machining force:	7 kN
(including reserve)	

Work supports

Top flange type with metallic wiper edge, 3 sizes, 3 types of function, single acting, max. operating pressure 500 bar

Application

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also vibration and deflection under machining loads.

The top flange type allows for space-saving and direct installation into the fixture body. Oil supply is made through drilled channels or pipe thread.

Description

In the body of the work support a thin-walled locking bush is integrated, which locks cylindrically around the freely-movable support plunger when pressurising the element with hydraulic oil.

The elements are protected against penetration of swarf by a metallic wiper edge and sealed against liquids. The venting port allows also the connection of positive air pressure protection.

Important notes

Work supports are not suitable to compensate side loads. The support plunger must not be stressed by tensile load. The admissible load force is valid for static or dynamic load. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger.

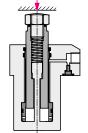
Operating conditions, tolerances and other data see data sheet A 0.100.

Positive air pressure connection

To guarantee functioning of the work supports, a vent port is imperative. No liquids may enter the end of the bore hole (see also data sheet G 0.110

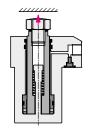
It is recommended to connect positive air pressure protection. While locking the support plunger, the positive air pressure must not exceed 4 bar. If the support plunger is not locked, maximum of 0.2 bar.

free of oil and water.

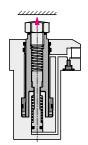

Advantages

- Space-saving version
- 3 sizes
- 3 types of function
- Contact force by spring or pneumatically adjustable (195X321)
- Load force up to 100 kN
- Alternatively pipe thread or drilled channels
- Metallic wiper edge and FKM wiper
- Connection of positive air pressure protection is possible
- Support plunger and interior parts protected against corrosion
- Connection of positive air pressure protection up to 4 bar is possible

Types of function


1. Spring advanced

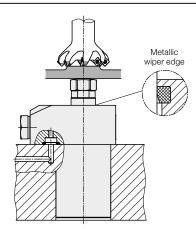
Page 2


2. Air pressure advanced

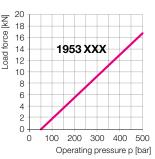
Page 3

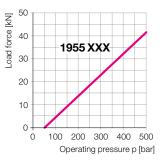
3. Hydraulic pressure and spring advanced

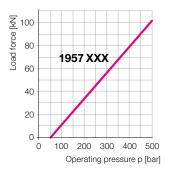
Page 4



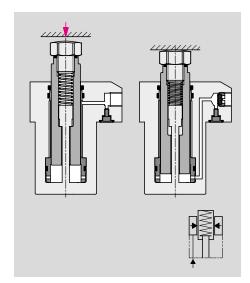
"Venting of the spring area").


the positive air pressure must be reduced to a


The positive air pressure connection must be

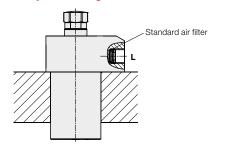

Connection of positive air pressure protection

Admissible load force as a function of the operating pressure



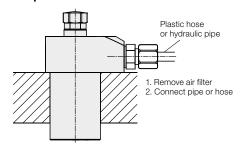
Combination with clamping elements

Page 5

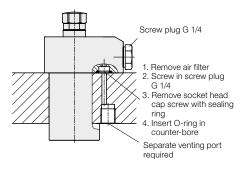

The support plunger is pushed back by the inserted workpiece, the spring force has to be overcome.

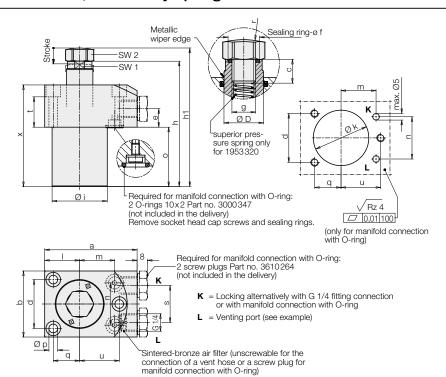
The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.

After unclamping the support plunger contacts still the workpiece with spring force, until the workpiece will be unloaded from the fixture.


Venting port

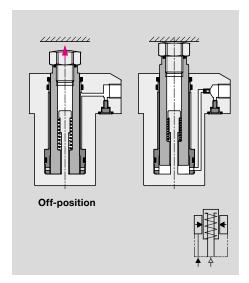
1. Dry machining




2. Wet machining

Pipe thread

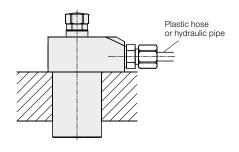
Manifold-mounting connection

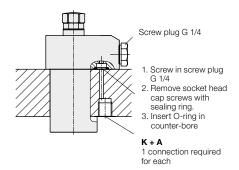


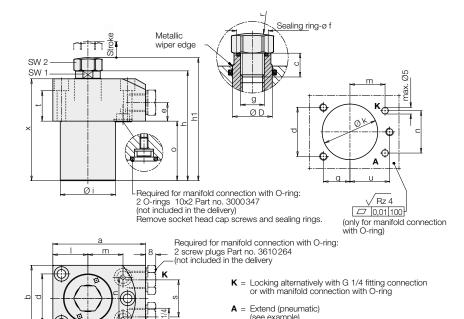
Support plunger Ø D	[mm]	20	32	50
Stroke	[mm]	12	16	20
Load force at 200/500 bar	[kN]	5,6/16,8	14/42	34/102
Plunger contact force min./max.	[N]	15/25	30/60	50/100
Elastic deformation at 500 bar	[µm/kN]	4,5	2,8	1,8
а	[mm]	70	85	125
b	[mm]	50	63	95
С	[mm]	12	12	20
d	[mm]	37	48	72
е	[mm]	14	18	15
Øf	[mm]	15,9	15,9	19,6
g	[mm]	M12	M12	M16
h	[mm]	95	119	174
h1	[mm]	105	129	184
Ø i ± 0,1	[mm]	44,8	59,8	89,8
Ø k + 1	[mm]	45	60	90
I	[mm]	26,5	34,5	55
m	[mm]	26,5	31	45
n	[mm]	32	46	75
0	[mm]	45	59	106
Øp	[mm]	6,6	8,5	14
q	[mm]	20	27	42
r	[mm]	45	45	60
S	[mm]	28	41	70
t	[mm]	23	29	26
u	[mm]	30	38	55
X	[mm]	77	99	146
SW 1	[mm]	17	27	41
SW 2	[mm]	19	19	24
Part no.		1953320	1955320	1957320
Spare O-ring 10 x 2 mm		3000 347	3000347	3000347
Screw plug G 1/4		3610264	3610264	3610264
Spare sealing ring for contact bol	t	3001731	3001 731	3002018

Recommendation

Positive air pressure protection can be connected to the venting port. The pressure of the positive air pressure protection increases the contact force of the support plunger.

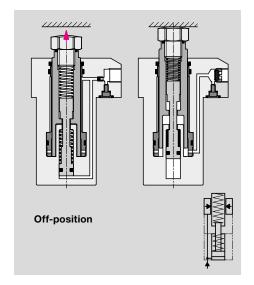

Extend and contact by air pressure


The support plunger contacts the workpiece by air pressure. The contact force is proportional to the air pressure less spring return force. The support plunger will be locked by hydraulic pressure and can compensate forces in axis direction.


For unclamping hydraulic and air pressure will be released and the support plunger retracts by spring force to its off-position.

Pneumatic port Fitting connection

Manifold-mounting connection


Support plunger Ø D	[mm]	20	32	50
Stroke	[mm]	12	16	20
Load force at 200/500 bar	[kN]	5,6/16,8	14/42	34/102
Spring force min./max.	[N]	15/25	30/60	50/100
Plunger contact force at 1 bar air pressure	Э			
(deduct spring force if necessary)	[N]	31	80	196
Elastic deformation at 500 bar	[µm/kN]	4,5	2,8	1,8
a	[mm]	70	85	125
b	[mm]	50	63	95
C	[mm]	12	12	20
d	[mm]	37	48	72
е	[mm]	14	18	15
Øf	[mm]	15,9	15,9	19,6
g	[mm]	M 12	M 12	M16
h	[mm]	83	103	154
h1	[mm]	93	113	164
Øi ±0,1	[mm]	44,8	59,8	89,8
Ø k + 1	[mm]	45	60	90
	[mm]	26,5	34,5	55
m	[mm]	26,5	31	45
n	[mm]	32	46	75
0	[mm]	45	59	106
Øp	[mm]	6,6	8,5	14
q	[mm]	20	27	42
r	[mm]	45	45	60
S	[mm]	28	41	70
t	[mm]	23	29	26
u	[mm]	30	38	55
X	[mm]	77	99	146
SW 1	[mm]	17	27	41
SW 2	[mm]	19	19	24
Part no.	, ,	1953321	1955321	1957321
Spare O-ring 10x2 mm		3000347	3000347	3000347
Screw plug G 1/4		3610264	3610264	3610264
Spare sealing ring for contact bolt		3001731	3001731	3002018
-				

Recommendation

The pneumatic air for the extension of the support plunger can also be used as positive air pressure protection. For retraction the port must be depressurised.

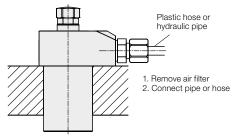
Type of function: Hydraulic pressure and spring advanced

extending hydraulically, contact by spring force

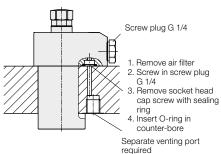
The support plunger is extended by a hydraulically pressurised small piston and contacts the workpiece with spring force.

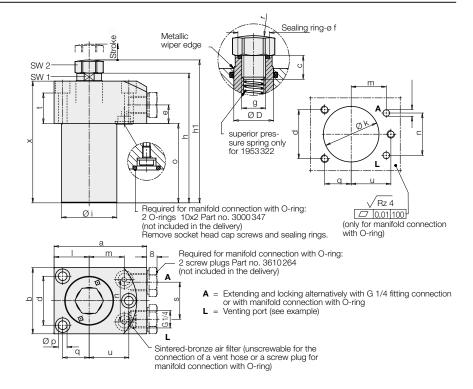
The support plunger will be locked by the increasing hydraulic pressure and can compensate forces in axis direction.

For unclamping hydraulic pressure will be released. The small piston retracts by spring force to its off-position and also retracts the support plunger.


Venting port

1. Dry machining




2. Wet machining

Pipe thread

Manifold-mounting connection

Support plunger Ø D	[mm]	20	32	50
Stroke	[mm]	12	16	20
Load force at 200/500 bar	[kN]	5,6/16,8	14/42	34/102
Plunger contact force min./max.	[N]	15/25	30/60	50/100
Admissible oil flow rate	[cm3/sec]	25	35	100
Required oil per stroke	[cm3]	1,0	3,3	9,8
Elastic deformation at 500 bar*	[mm/kN]	4,5	2,8	1,8
а	[mm]	70	85	125
b	[mm]	50	63	95
С	[mm]	12	12	20
d	[mm]	37	48	72
е	[mm]	14	18	15
Øf	[mm]	15,9	15,9	19,6
9	[mm]	M12	M12	M16
h	[mm]	98	120	172
h1	[mm]	108	130	182
Øi ±0,1	[mm]	44,8	59,8	89,8
Ø k + 1	[mm]	45	60	90
	[mm]	26,5	34,5	55
m	[mm]	26,5	31	45
n	[mm]	32	46	75
0	[mm]	60	76	124
Øp	[mm]	6,6	8,5	14
q	[mm]	20	27	42
r	[mm]	45	45	60
S	[mm]	28	41	70
t	[mm]	23	29	26
u	[mm]	30	38	55
X	[mm]	92	116	164
SW 1	[mm]	17	27	41
SW 2	[mm]	19	19	24
Part no.		1953322	1955322	1957322
Spare O-ring 10x2 mm		3000347	3000347	3000347
Screw plug G 1/4		3610264	3610264	3610264
Spare sealing ring for contact bol	t	3001 731	3001 731	3002018

Recommendation

Positive air pressure protection can be connected to the venting port. The pressure of the positive air pressure protection increases the contact force of the support plunger. For unclamping the positive air pressure protection must be switched off.

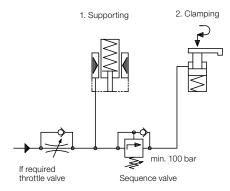
Combination with clamping elements

Dimensioning of the load force of work supports

The admissible load force of work supports has always to be dimensioned so that the clamping force of the used clamping elements and the static and dynamic machining forces can be safely compensated.

- Admissible load force
- Clamping force
- Safety (reserve)
- = Possible machining force

If the total of all occuring forces exceeds the admissible load force, the support plunger of the work support will be pushed back and the work support will be damaged.


Ratio of load force to clamping force

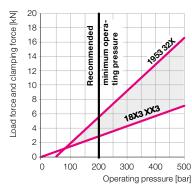
On principle the load force of the work supports should be at least twice the clamping force of the clamping elements.

Load force ≥ 2 x clamping force

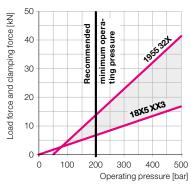
Clamping onto the work support Control of clamping sequence

The sequence – supporting and clamping – has to be controlled as a function of the pressure, e.g. by a sequence valve.

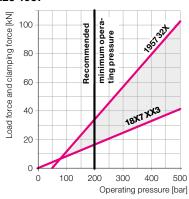
The sequence valve has to be adjusted to an opening pressure above the intersection of the two straight lines in the diagram.


If due to a too high flow rate a throttle valve is required, installation should be made as shown in the hydraulic circuit diagram.

Combinations work supports with swing clamps of the same size

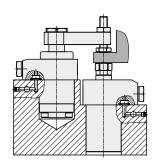

To get a load force twice the clamping force, for all 3 sizes of work supports an operating pressure of at least 200 bar is required.

The vertical distance of the two straight lines in the area of the colorised surface indicates the resulting maximally possible machining force including reserve.


Size 1953

Size 1955

Size 1957



Important note

The admissible load forces as per the diagram are static. The machining forces can also generate vibrations which exceed by far the mean value. For this reason a corresponding safety factor has to be taken into account.

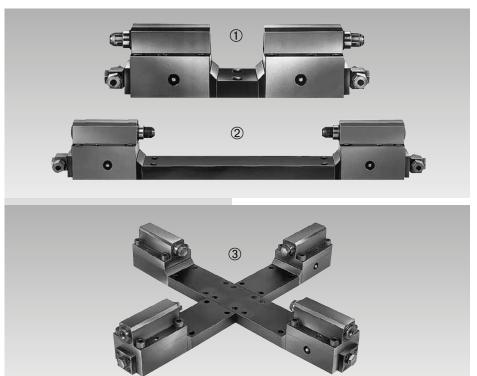
Example

The swing clamp 1895 103 (data sheet B 1.880) clamps a workpiece onto the work support 1955 322.

For size 1955 the following can be taken from the diagram:

Minimum operating pressure: 200 bar Load force at 200 bar: 14 kN Clamping force at 200 bar: 7 kN

Possible machining force at 200 bar:


(including reserve)

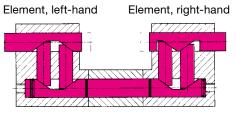
Admissible load force: - Clamping force:	14 kN -7 kN
= Possible machining force:	7 kN

Concentric Positioning and Clamping Elements

with variable range of clamping, hydraulically operated double acting, max. operating pressure 500 bar

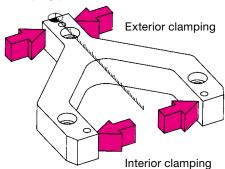
Figures

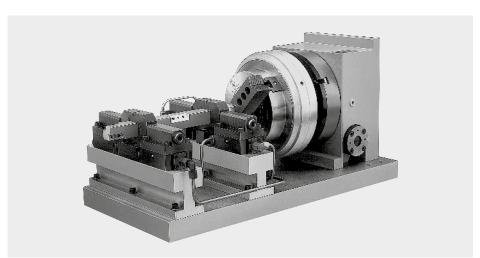
- Double clamping element for concentric interior clamping
- ② Double clamping element with prolonged connecting bar for exterior clamping
- ③ By means of the double clamping elements modular fixtures can be composed which position and clamp concentrically in several dimensions, e.g. in direction of the x- and y-axis.


Description

Concentric positioning and clamping with two or three-jaw chucks on stationary fixtures is nothing new. In many applications, however, it is not possible to place the relatively large chuck bodies on the fixture. Often the smaller clamping strokes are an additional obstacle.

In our development, the individual parts can be connected to a two or multiple-element version. In the multiple-jaw version, each pair of jaws clamps independently of the remaining ones, thereby concentric clamping is obtained.


The opening can be determined by means of a connecting bar. The clamping strokes of the several sizes are designed such that manual or automatic loading and unloading can be effected to clamp blanks with large tolerances. Also single-acting elements are available on request.


Active principle

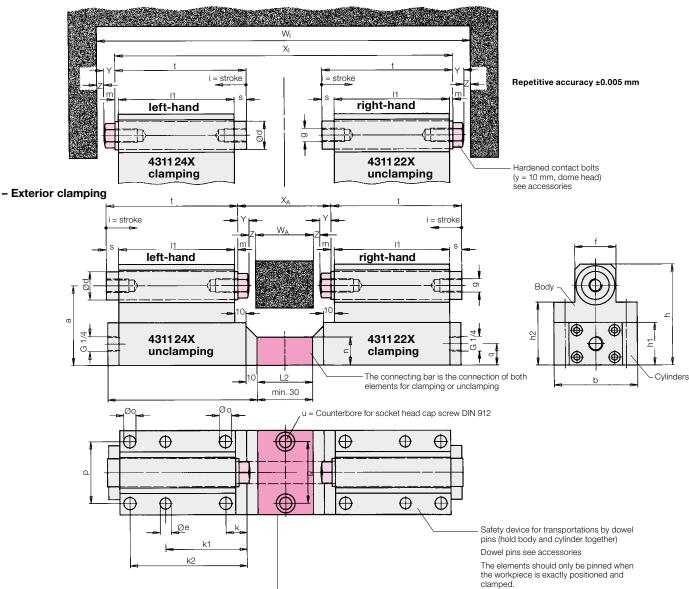
Connecting bar complete

Clamping possibilities

Application example

The flexible clamping unit is used to clamp bars which can be machined in every position, e.g. drilled, milled, threaded, etc.

In conjunction with a pneumatic two-jaw chuck the rotary indexing table is used to determine the machining position of the workpiece.


The two-jaw chuck and the right-hand concentric clamping element keep the bars in the exact working position.

The floating clamping element in the centre supports the bar. For this purpose it must work in a floating way, that means without centring function, what can be obtained by omitting the connecting bar.

(Available on request)

Concentric clamping elements hydraulically operated

- Interior clamping

Connecting bar, complete

Part no. 0432XXX Please specify when ordering:

1. Size

D16 / D25 / D32

2. Length of connecting bar L2 / L3 / L4 = ___ mm

After ordering a connecting bar, you will receive an installation drawing that shows the position of the fixing screws.

Calculation of the length of connecting bar L

Size	2 elements	3 elements + crossing for 3 elements	4 elements + crossing for 4 elements
D 16	$L2 = X2_{I/A} - X2 \min_{I/A} + 30$	$L3 = \frac{X3_{I/A} - X3 \min_{I/A}}{2} + 24.2$	$L4_{a/b} = \frac{X4_{I/A (a/b)} - X4 \min_{I/A}}{2} + 20$
D 25	$L2 = X2_{I/A} - X2 \min_{I/A} + 30$	$L3 = \frac{X3_{I/A} - X3 \min_{I/A}}{2} + 26$	$L4_{a/b} = \frac{X4_{I/A (a/b)} - X4 \min_{I/A}}{2} + 20$
D 32	$L2 = X2_{I/A} - X2 \min_{I/A} + 30$	$L3 = \frac{X3_{I/A} - X3 \min_{I/A}}{2} + 26$	$L4_{a/b} = \frac{X4_{I/A (a/b)} - X4 \min_{I/A}}{2} + 25$
Dimension X f	ior		

 W_{l} , $W_{l (a/b)} = workpiece inside dimension$ W_{A} , $W_{A (a/b)} = workpiece outside dimension$

= only applies to crossing for 4 elements

For rectangular section (a x b) two different lengths of connecting bars L_a and L_b are required

X2 min_L X3 min_L X4 min_L = minimum dimension interior clamping (chart) $X2 \min_{A} X3 \min_{A} X4 \min_{A} = \min \min \min \text{ dimension exterior clamping (chart)}$ (bolt retracted without contact bolt)

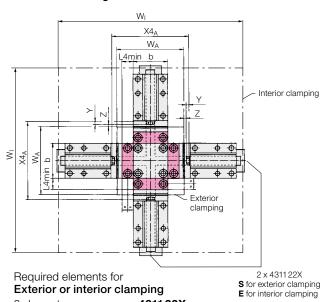
Y = height contact bolt

Z = ideal stroke per clamping bolt up to the workpiece (< clamping stroke)

Dimensions • Part numbers Crossing for 3 elements • Crossing for 4 elements

Size		D16	D25	D32
Clamping force per pair of elements	[kN]	5	12	20
at max. operating pressure	[bar]	500	500	500
A centre height	[mm]	52	71	87
			Larger centre he	eight on request
b	[mm]	62	75	86
Piston/bolt Ø d	[mm]	16	25	32
E Ø pin hole	[mm]	8 H7	10 H7	12 H7
f	[mm]	28	37	45
g	[mm]	M 8 x 18	M 12 x 30	M 16 x 22
h	[mm]	66	90	111
h1	[mm]	27	38	47
h2	[mm]	41	56	72
i clamping stroke	[mm]	6	8	8
k	[mm]	18.5	19	22.5
$k1 \pm 0.05$	[mm]	58.5	73	81.5
k2	[mm]	83.5	105	117.5
k3	[mm]	12	15	18
k4	[mm]	22	30	35
k5	[mm]	32	40	50
1	[mm]	117	134	152
l1	[mm]	82	104	120
m	[mm]	2	3	3
n	[mm]	20	25	30
00	[mm]	9	11	13
$p \pm 0.02$ (only Ø e)	[mm]	45	55	65
p1	[mm]	40	52	60
p2	[mm]	68	86	100
q	[mm]	14	19	24
S	[mm]	8	11	11
t	[mm]	92	118	134
u (counterbore for)	[mm]	M 8	M 10	M 12
X2 _{min.1} /X2 _{min.A}	[mm]	238/66	284/64	316/64
X3 _{min.1} / X3 _{min.4}	[mm]	320.4/148.4	386/166	438/186
X4 _{min.1} / X4 _{min.4}	[mm]	310/138	369/149	422/170
L2 min.	[mm]	30	30	30
L3 _{min.}	[mm]	24.2	26	26
L4 min.	[mm]	20	20	25
Weight	[kg]	2.2	4.5	9
Element, right-hand	Part no.	4311221	4311222	4311223
Element, left-hand	Part no.	4311241	4311242	4311243
Crossing for 3 elements Crossing for 4 elements	Part no. Part no.	0432300 0432400	0432301 0432401	0432302 0432402
Accessories				
Contact bolt (y = 10 mm)	Part no.	3614001	3614028	3614003
Dowel pin DIN 6325	Part no.	3300313	3300 489	3300 617

Crossing for 3 elements


u = bore hole and counterbore for socket head cap screw DIN 912 Interior clamping E = unclamping 2 x 431122X or 2 x 431124X S = clamping E = unclamping E = unclamping E = unclamping E = x 431122X or 2 x 431124X

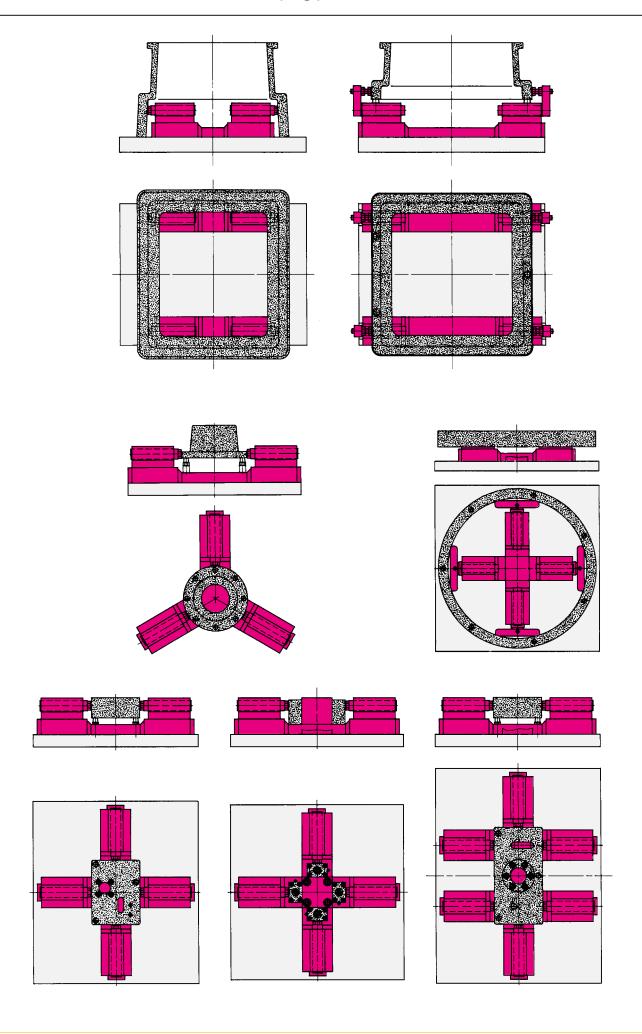
Required elements for

Exterior clampingInterior clamping2 elements4311 22X1 element4311 22X1 element4311 24X2 elements4311 24X1 crossing for 3 elements043230X1 crossing for 3 elements043230X3 connecting bars L30432XXX3 connecting bars L30432XXX

The 3 connecting bars must have the same length.

Crossing for 4 elements

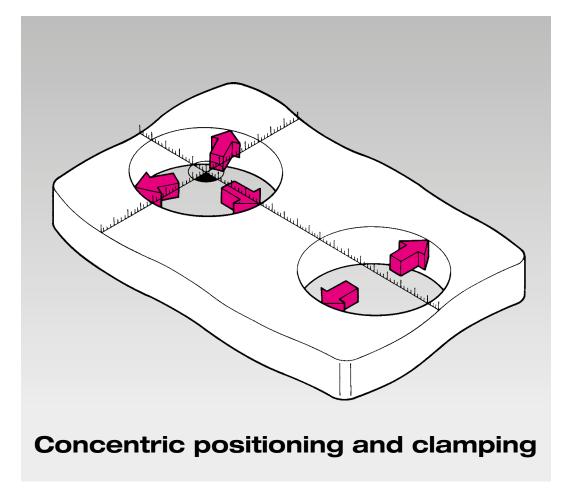
 2 elements
 4311 22X

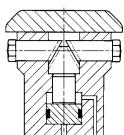

 2 element
 4311 24X

 1 crossing for 4 elements
 0432 40X

 4 connecting bar L4(a/b)
 0432 XXX

For a rectangular section, always 2 connecting bars have the same length.


Clamping possibilities

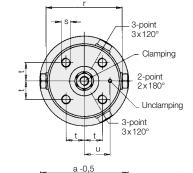


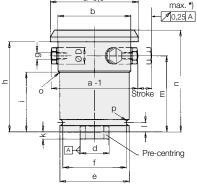
Concentric Positioning and Clamping Elements

2 and 3-point positioning, double acting, hydraulically operated max. operating pressure 250 bar

Diameters from 25 mm to 177 mm

2 and 3-point concentric positioning and clamping elements


Version 431200X, -02X, -05X, -07X



Version 43121XX, -2XX, -3XX, -4XX

Description

Workpieces with cast or machined bores, reliefs or break-outs, can be easily loaded to the fixture with the concentric positioning and clamping elements and concentrically clamped or positioned for machining. Overtolerance conditions can be avoided and clamping tasks can be completely solved by an ingenious combination of 2 and 3-point elements. Various mounting and connecting possibilities extend the use for multiple applications. Different sizes and correspondingly adapted contact bolts allow exact adaptation to the required clamping diameter.

Important notes

The pre-centring with the supplied bushing (Ød) allows a positioning precision of max. 0.125 mm. The values for positioning and repetitive accuracy specified in the chart can only be obtained by determining the virtual NOMINAL position (zero point). Both options are also shown visually on page 4. The prerequisites and the influence of the workpiece weight on the positioning accuracy are also described.

These concentric clamping elements are not only suitable for the use on lathes.

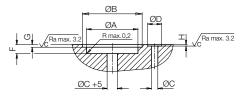
Clamping Ø a	Part no. 2-point elements	Part no. 3-point elements
25 - 29	4312000	4312025
28 - 32	001	026
32 – 36	002	027
36 - 40	4312050	4312075
39 – 43	051	076
42 - 46	052	077
45 – 49	053	078
48 - 52	054	079
51 – 55	055	080
54 – 59	4312100	4312150
58 – 63	101	151
62 – 67	102	152
67 – 72	103	153
71 – 76	104	154
76 – 84	4312200	4312250
83 – 91	201	251
90 – 98	202	252
98 – 109	4312300	4312350
109 – 120	301	351
119 – 130	302	352
130 – 145	4312400	4312450
141 – 156	401	451
152 – 167	402	452
163 – 177	403	453

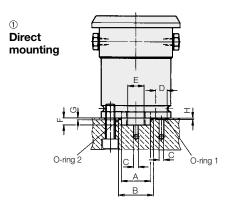
Elements for clamping diameters bigger than Ø 177 mm are available on request.

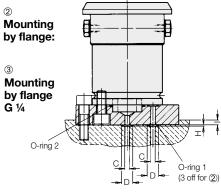
		431200X 431202X	431205X 431207X	43121XX	43122XX	43123XX	43124XX
Clamping range Ø	[mm]	25-36	36-55	54-76	76-98	98-130	130-177
Clamping force at 100 bar	[kN]	4	4	3	7	11	17
at 250 bar	[kN]	10	10	7	17	28	44
Adm. positioning force at a minimum pressure of 100 bar (see page 4)	[kN]	1.6	1.6	1.1	2.7	4.5	7.0
Positioning accuracy*	[mm]	0.02	0.02	0.02	0.025	0.025	0.03
Repetitive accuracy *	[mm]	0.04	0.04	0.04	0.05	0.05	0.06
Minimum operating pressure	[bar]	20	20	20	20	20	20
Max. operating pressure	[bar]	250	250	250	250	250	250
Oil volume / mm advance stroke	[cm³]	0.35	0.35	0.35	0.85	1.39	2.17
/ mm return stroke	[cm³]	0.15	0.15	0.15	0.50	0.84	1.33
Tightening torque - contact bolt	[Nm]	-	15	10	10	15	20
Bolt Ø D	[mm]	14	14	12	14	18	22
Stroke	[mm]	2.5	2.5	3	4.5	6	8
Øb	[mm]	24	35	45	65	85	115
Ødj6	[mm]	16	16	16	25	32	40
Ø e −0.1	[mm]	45	45	45	60	74	90
Øf -0.1	[mm]	40	40	40	54	67	81
g x depth of thread	[mm]	_	M8x6	M6x8	M 6 x 12	M 8 x 16	M 10 x 20
h	[mm]	64	64	57	68	80	91
i	[mm]	28	28	_	41	47	52
k	[mm]	6	6	6	6	6	7
	[mm]	8	8	8	9	10	12
m	[mm]	51	51	45	56	64	72
n	[mm]	66.5	72	65	77	91	105
0	[mm]	R6	R6	_	R 0,5	R 2,5	R 2,5
р	[mm]	2.6	2.6	2.6	3.1	3.6	4.6
r	[mm]	_	29	45	65	85	115
s x depth of thread	[mm]	M 6 x 12	M 6 x 12	M 6 x 12	M8x16	M 10 x 20	M 12 x 24
t	[mm]	11.3	11.3	11.3	15.6	19.1	23.3
u	[mm]	16.8	16.8	16.8	22	27	33
Weight	[kg]	0.5	0.7	1.1	1.8	3.6	7.2
* see "Important notes" and the explan		n page 4					

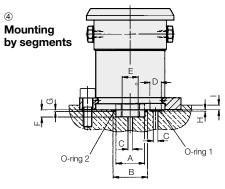
Mounting possibilities with accessory

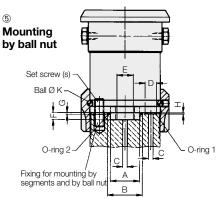
Order information

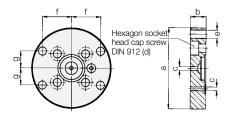

The elements except (4312 000/-025) are supplied with short, dome-head and hardened contact bolts as standard.


Please indicate on your order the corresponding workpiece diameter as well as the tolerances.


Clamping examples

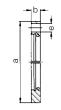

see page 4.


Centring and sealing for direct mounting, mounting by segments and mounting by ball nut

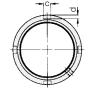


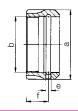
O-rings for mounting variants ① ② ③ ④ ⑤ (not included in the delivery)


•9• .•			•	~ ~ ~ (, ,						
for elements	A H7	B+0,2	С	D+0,2	Е	F -0,1	G±0,05	H±0,05	K	1	O-ring 1	Part no.	O-ring 2	Part no.
43120XX	16	20.6	3	7.8	8	6	1.3	1.1	5	4	5 x 1.5	3000340	17.17 x 1.78	3000663
43121XX	16	20.6	3	7.8	8	6	1.3	1.1	5	4	5 x 1.5	3000340	17.17 x 1.78	3000663
43122XX	25	30.0	4	9.8	14	6	1.5	1.1	6	4	7×1.5	3000342	26.00 x 2.00	3000769
43123XX	32	36.6	5	10.8	16	6	1.3	1.1	7	4	8 x 1.5	3000343	33.05 x 1.78	3001 238
43124XX	40	46.6	5	10.8	18	7	2.0	1.1	9	4	8×1.5	3000343	40.95 x 2.62	3000944



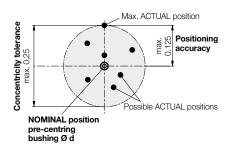
Mounting by 1	flange ②							
for elements	a ^{h7}	b	С	d	е	f	g	Part no.
43120XX	68	15	3	M 6 x 16	Ø 6.6	24.2 1	4.0	3456033
43121XX	68	15	3	M 6x16	Ø 6.6	24.2 1	4.0	3456033
43122XX	88	17	4	M 8 x 20	Ø 9.0	32.0 1	8.5	3456035
43123XX	110	20	5	M 10 x 25	Ø 11.0	39.8 2	3.0	3456037
43124XX	130	22	5	M 12 x 25	Ø 13.5	47.6 2	27.5	3456038




Mounting by flange G ¼ ③											
for elements	a ^{h7}	b	С	d	е	f	g	Part no.			
43120XX	68	30	G 1/4	M 6 x 35	Ø 6.6	24.2	14.0	3456042			
43121XX	68	30	G 1/4	M 6x35	Ø 6.6	24.2	14.0	3456042			
43122XX	88	30	G 1/4	M 8 x 35	Ø 9.0	32.0	18.5	3456043			
43123XX	110	30	G 1/4	M 10 x 35	Ø 11.0	39.8	23.0	3456044			
43124XX	130	30	G 1/4	M 12 x 35	Ø 13.5	47.6	27.5	3456045			

Mounting by	segments 4					
for elements	a	b	е	f	g	Part no.
43120XX	68	10.1	Ø 6.6	24.2	14.0	3533240
43121XX	68	10.1	Ø 6.6	24.2	14.0	3533240
43122XX	88	11.6	Ø 9.0	32.0	18.5	3533241
43123XX	110	13.1	Ø 11.0	39.8	23.0	3533242
43124XX	130	16.1	Ø 13.5	47.6	27.5	3533243

Mounting by b	all nut (wit	th balls and se	et screws	5			
for elements	а	b	С	d	е	f	Part no.
43120XX	63	M 48 x 1.5	8	3.5	M 6	22	0352762
43121XX	63	M 48 x 1.5	8	3.5	M 6	22	0352762
43122XX	78	M 60 x 1.5	8	3.5	M 8	25	0352763
43123XX	94	$M75 \times 2.0$	10	4.0	M 10	27	0352765

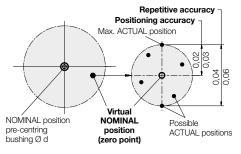

Positioning accuracy Clamping examples

Definition

The **positioning accuracy** is the deviation of the ACTUAL position from the NOMINAL position. The **repetitive accuracy** indicates the range of the reached position when a NOMINAL position is repeatedly approached from the same starting position.

1. Pre-centring with bushing Ø d

Due to component tolerances, the contact bolts have a concentricity tolerance of max. 0.25 mm (see dimensional drawing on page 2). If a work-piece is centred and clamped, the positioning accuracy is 0.125 mm (see sketch) in the worst case.



If further workpieces are inserted and clamped in the same way, the position accuracy will reach approximately the same value again.

2. Determine the virtual NOMINAL position

- 2.1 Centre and clamp a workpiece (sample part). This must be done in the same way as later in production.
- 2.2 Use the measuring probe to scan the clamped hole and determine the virtual zero point (hole centre).

2.3 Program the machine control accordingly. The advantage of this method is that a high positioning accuracy (0.02 - 0.03 mm) and repetitive accuracy (0.04 - 0.06 mm) can be expected (see chart on page 2).

3. Requirements

To ensure that all other similar workpieces in a series have the same virtual zero point, the following criteria must be met:

 The workpieces must always be moved from the same starting position and in the same way into the clamping position.

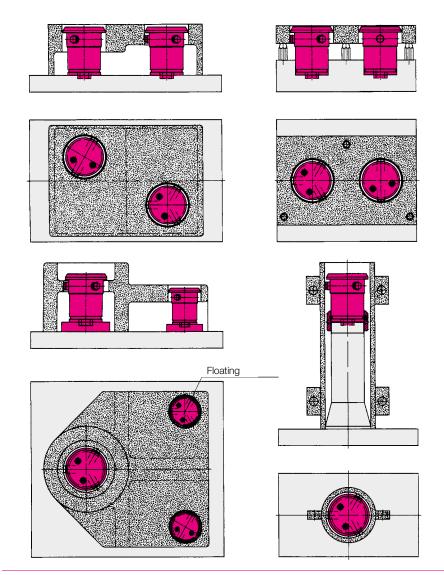
- The centring bore should be absolutely cylindrical.
- The centring bore should not have a concentricity error to the NOMINAL position.

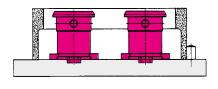
4. Influence of the workpiece weight

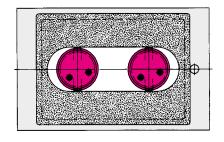
High workpiece weights reduce the positioning accuracy and increase the wear of the centring bolts since

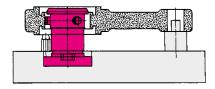
- in the case of vertical installation, the centring element has to apply the friction force that can be up to 25% of the workpiece weight.
- in the case of horizontal installation, the centring element must lift the workpiece a little.

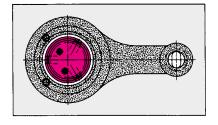
5. Admissible positioning force


For the cases mentioned above, we have indicated an admissible positioning force in the chart on page 2. The corresponding workpiece weights are mechaincally tolerable.


To enable the position accuracy according to the chart page 2, it is necessary to


- determine the virtual NOMINAL position according to point 2
- meet the requirements according to point 3.

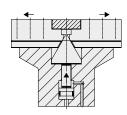

6. Clamping examples


A number of examples where the weight of the workpieces is negligible can be found on this page.

Concentric Clamping Elements

2 and 3-point interior clamping, for interchangeable clamping jaws \emptyset 16 – 121 mm, double acting, max. operating pressure 250 bar

Application


This hydraulically-operated concentric clamping element can be equipped with especially low clamping jaws to receive workpieces with interior centrings of low depth.

Suitable workpieces can directly rest on the clamping jaws so that additional support points are not required.

With a combination of 2 and 3-point elements, workpieces with 2 centring holes can be exactly positioned.

Description

The 2 or 3 base jaws are coupled to a coneshaped contact bolt in the centre of the housing, that is driven by a double acting hydraulic piston.

To obtain the required synchronization accuracy all parts are manufactured with high precision. The nitrated base jaws have 3 fixing threads. Depending on the desired centring diameter, the

pending on the desired centring diameter, the accordingly adjusted clamping jaws can always by fixed with at least 2 screws.

The exact position of the clamping jaws is secured with 2 drill bushings.

Important notes

The concentric clamping elements are not only suitable for the use on turning machines.

If a workpiece is clamped by one concentric clamping element only, a tilting torque is produced by radial machining forces. Please pay attention to the chapter "Admissible machining forces" on page 2.

In the effective area of the clamping jaws there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

Advantages

- Ideal for 5-sided machining
- Suitable for low centring depths
- Clamping jaws can be adapted to the workpiece
- Workpiece support on clamping jaws possible
- Centring repeatability 0.02 mm
- Stroke of clamping jaws 10 mm
- Connection for positive air pressure protection
- Pneumatic stroke end control
- Optional pneumatic contact control

Positive air pressure connection

The standard positive air pressure protection keeps the hole centre free of swarf, so that the base jaws can freely return.

Pneumatic stroke end control

The positive air pressure protection can also be used for the control of the unclamping position. The returning clamping jaws close in their end position the bore hole of the positive air pressure connection.

Optional contact control

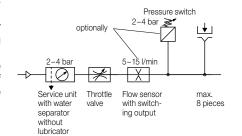
In the version with contact control, pneumatic pressure is supplied to one of the base jaws, which is then transmitted into the clamping jaw. In the crowned clamping surface there is a small bore hole. If a workpiece is clamped correctly, it closes the bore hole.

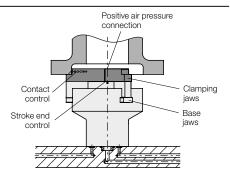
Signal conversion: Pneumatic - electric

An electro-pneumatic measuring device can either signal the pressure increase or a drop of the air flow rate.

1. Pressure switch

The pressure switch signals the pressure increase when closing a blow hole. It is important that the pressure difference between open and closed blow hole is big enough to get a process-safe message.

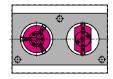

2. Flow meter


The flow meter signals the drop of the air flow rate when closing a blow hole.

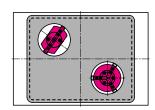
The flow meter should have a digital display and one adjustable limit switch (e.g. type SFAB of FESTO)

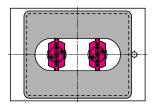
The switching threshold is set to a mean value between open and closed nozzle.

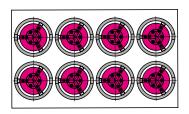
We recommend flow measurement, if only one pneumatic line is available for several elements.



Applications


• Centre and clamp in 1 bore hole


• Centre and clamp in 2 bore holes

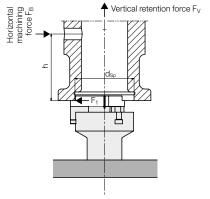

• Diagonally centre and clamp in 2 bore holes

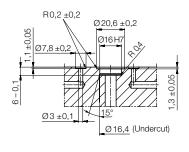
• Centre and clamp in longitudinal holes

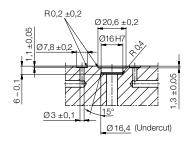
Multiple clamping fixture

Technical data and dimensions Admissible machining forces

Technical data Max. clamping force 5 in total approx. [kN] Max. clamping force per jaw approx. 2-point / 3-point 2.5 / 1.67 [kN] Max. operating pressure 250 [bar Min. operating pressure [bar 20 Stroke of clamping jaws [mm] 10 Centring repeatability 0.02 [mm] Oil volume/clamping stroke [cm³] 3.5 Oil volume/return stroke [cm³] Weight 2-point / 3-point approx. 2.54 / 2.60 [kg] Part no. 2-point 4312620P Part no. 3-point 4312630P


P = Pneumatic contact control (optional)


Admissible machining forces

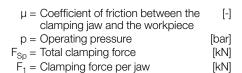

2-point 3-point 4312620P 4312630P Drill bushings Screws M5 x 20 A 5 x 8 DIN179 Ø 100 Ø 100 92.5 ± 0.1 $92,5 \pm 0$ 82.5 82,5 depth 35 depth 35 52 4 x M 6 4 x M 6 12 deep Ø 16 i6 Ø 60 g6 Ø 60 g6

Included in our delivery:

- 1 x O-ring 17.17 x 1..78 (3000663)
- 3 x O-ring 5 x 1.5 (3000 340)

Vertical retention force

The concentric clamping element generates only horizontal clamping forces. Vertical (uplift) retention forces can only be transmitted non-positively by friction.

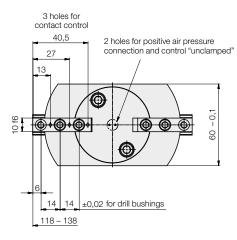

The largest vertical retention force is

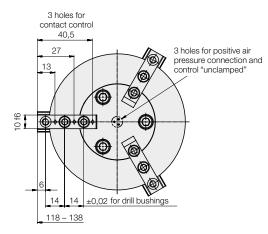
	$F_V = \mu * F_{Sp}$	[kN]
with μ ~ 0.2:	$F_V \sim 0.2 * F_{Sp}$	[kN]

Admissible horizontal machining force

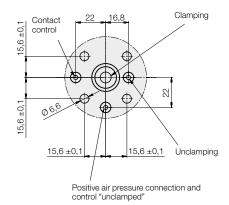
Depending on the height of attack of the machining force over the support surface, a tilting torque is generated and thus also a vertical uplift force, which has to be compensated non-positively by friction between the clamping jaw and the workpiece. In the most unfavourable angle

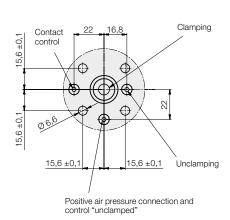
$$\begin{split} F_{Badm} \leq & \frac{F_1 * 0.75 \text{ d}_{Sp} * \mu}{h} \leq F_1 \quad \text{[kN]} \end{split}$$
 with $F_1 = 20 * p$ and $\mu \sim 0,2$ results:
$$F_{Badm} \leq & \frac{3 * p * d_{Sp}}{h} \leq F_1 \quad \text{[kN]} \end{split}$$



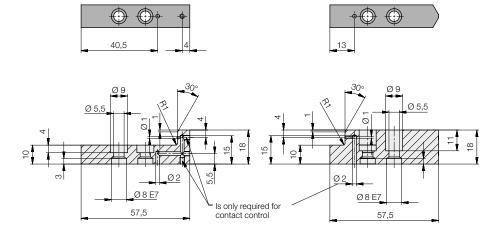

[mm]

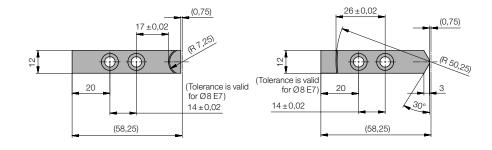
[mm]


d_{Sp}= Clamping diameter h = Height of the machining force above the support surface


If the machining forces are higher, the workpiece can be supported on the side. The concentric clamping element can also be used to only centre a workpiece and to clamp with additional elements on external fixed points.

Connecting scheme

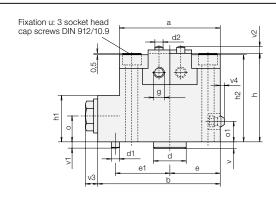


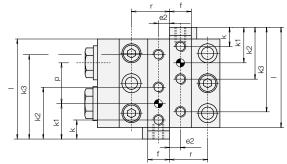

Examples for clamping jaws

Clamping jaws for manufacturing dimensions

for clamping Ø 17 – 35 mm (4312620 P)

for clamping Ø 103 – 121 mm (4312630P)




Parallel Slide Centering Element

double acting, max. operating pressure 500 bar

Conical lubricating nipple DIN 71412

Application

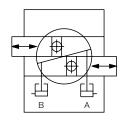
This element is used in clamping systems in order to centre workpieces with small complicated contours and ribbing serving as a base for the definition of tolerances.

Description

By a clever arrangement of the centre of rotation to the hydraulic piston the retaining force of a clamping jaw is three times higher than the clamping force. If only one clamping jaw acts at the workpiece, the clamping force is twice as large. This happens as long as the workpiece is moved to the centre.

Advantage

 Thanks to the compact overall dimensions the element is suitable for installation in any hydraulic clamping system.

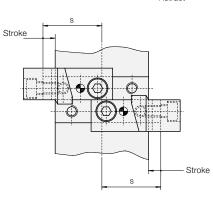

Clamping jaws

The clamping jaws, to be manufactured by the customer according to the special application, are precisely positioned at the clamping slide by means of a centre pin and a lateral key. The clamping jaws are fixed from above by means of 3 screws and from the side by 1 screw.

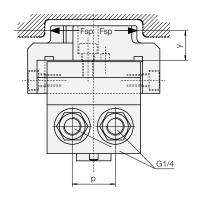
The above figure shows a parallel slide centring element with clamping jaws and contact bolts. The clamping process is effected from the inside to the outside (interior clamping).

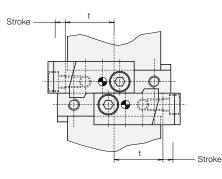
Representation of principle

Double-acting parallel slide centering element

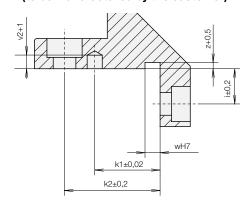


Position of clamping slides for interior and exterior clamping see page 2


Centering repeatability ±0.02 mm				
Clamping force/jaw Fsp at y	[kN]	2.8	5.0	8.8
Stroke/jaw	[mm]	6	7	8
Piston Ø	[mm]	12	16	20
a	[mm]	62	74	90
b	[mm]	82	90	105
С	[mm]	55	65	75
d h6	[mm]	22	24	26
d1 m6	[mm]	6	8	8
d2 m6	[mm]	6	6	8
е	[mm]	31	37	45
e1 ±0.02	[mm]	40	40	50
e2 ±0.1	[mm]	7	9	11
f	[mm]	13	16	20
g	[mm]	M 6 x 10	M 8 x 11	M 10 x 13
h	[mm]	56	65	76
h1	[mm]	31	34	42
h2	[mm]	55	64	75
i	[mm]	12	14	17
k	[mm]	12	14	17
$k1 \pm 0.02$	[mm]	22	26	31
k2	[mm]	32	38	45
k3	[mm]	52	62	73
1	[mm]	62.5	73.5	85
m	[mm]	20	22	27
0	[mm]	16	19	21
01	[mm]	13	15	15
r	[mm]	23	28	34
u 3x	[mm]	M 6 x 60	M 8 x 70	M 10 x 80
V	[mm]	4	5	5
v1	[mm]	5	6	6
v2	[mm]	5	5	6
v3	[mm]	9	9	7
v4	[mm]	3	0	0
w j7	[mm]	5	6	8
Z	[mm]	2.2	2.5	3
Weight	[kg]	1.7	2.7	4.4
Oil volume per mm clamping slide stro		0.16	0.28	0.47
Part no.		4316120	4316160	4316200

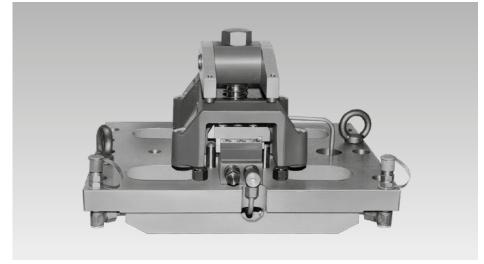

Exterior clamping

Extend Retract



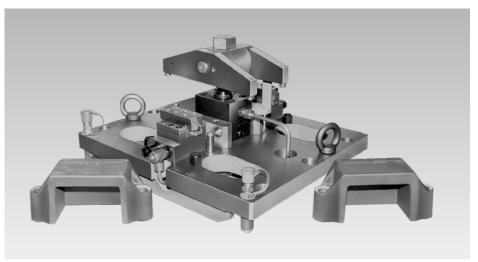
Interior clamping

Example of clamping jaw (to be manufactured by the customer)



р	[mm]	26	30	37
S	[mm]	35	41	47.5
t	[mm]	29	34	39.5
y applic. of force	[mm]	20	24	28

Hint


In case of 2 x y the clamping force will be reduced by 6% (friction loss).

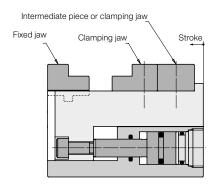
Application example

The opposite figure shows a hydraulicallyoperated fixture for concentric positioning and clamping of two casted housings, whose interior surfaces are due to functional reasons have to be concentrically arranged to the machined holes.

The machining of the interior surfaces could be avoided thanks to the use of concentric clamping elements.


The clamping fixture in plate constructions installed on a vertical machining centre with rotary indexing table and trunnion bearing.

Fixture Clamp with Fixed Jaw


max. clamping force 9.5 kN, jaw width 40 mm, double acting, max. operating pressure 250 bar

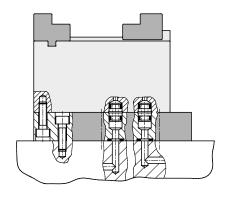
Advantages

- Very compact design
- High rigidity and precision
- Strokes 5 and 30 mm
- Double-acting function
- Fixtures without tubes possible
- Exchangeable jaws
- Pneumatic contact or seat control in the fixed jaw possible
- Good swarf protection
- Port for central lubrication
- Mounting position: variable

Function

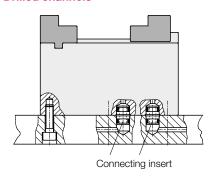
Application

The fixture clamps are used for machining of dimensionally stable workpieces in single or multiple clamping fixtures.


Due to their compact design they can be arranged in a very limited space.

Fixture clamps are especially suitable for series manufacturing in automated mode.

The double-acting cylinder function combined with central lubrication and good swarf protection guarantees a high process safety.

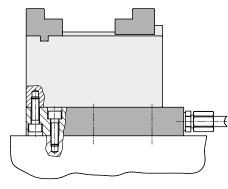

Fixing from above

with accessory adaptor plate **Drilled channels**

Fixing from below

Drilled channels

Description

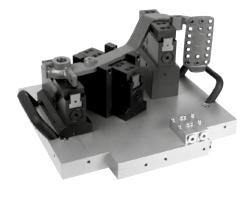

The fixture clamp with fixed jaw consists of a very small basic body with integrated hydraulic cylinder which actuates the movable jaw.

All threads and ports are at the bottom to allow a space-saving arrangement of several clamping points in a very limited space.

If fixing from below is not possible an adaptor plate for manifold mounting or tube connection is available. As accessory also blanks of clamping jaws are available for adaptation to the workpiece contour.

The fixed jaw can be equipped with a pneumatic seat control.

Fitting connection



Fixed jaw, clamping jaws and adaptor plate are not included in the delivery of the fixture clamp and have to be ordered separately as accessory.

Application example

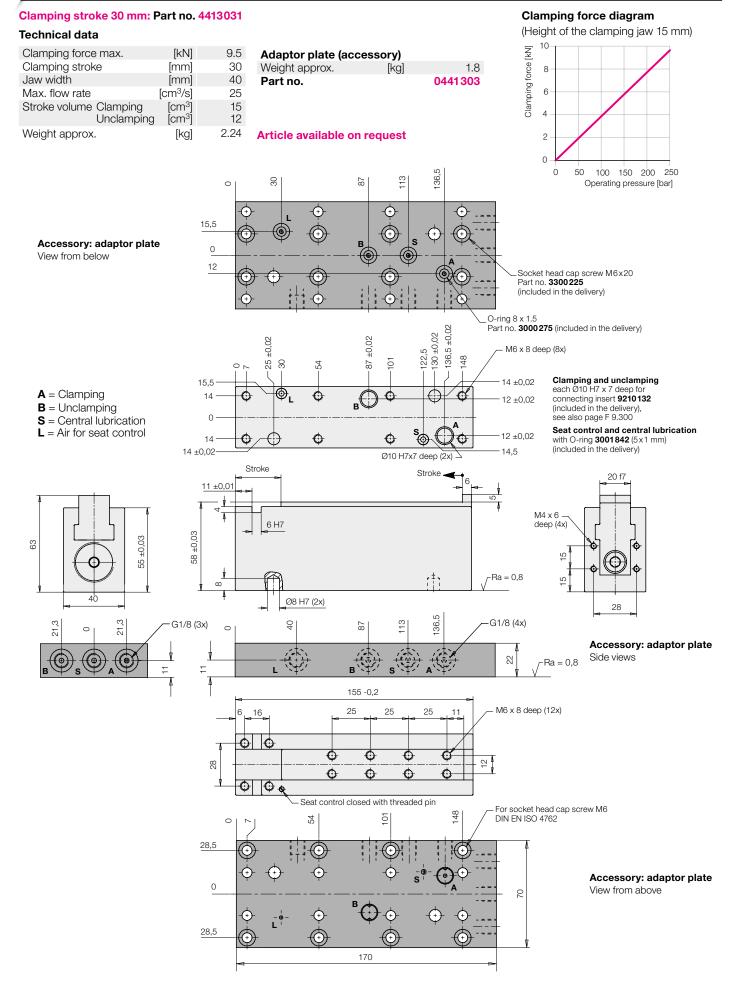
Accessories

Clamping fixture for a pedal of a freight vehicle.

Important notes

The fixture clamp is only suitable for exterior clamping.

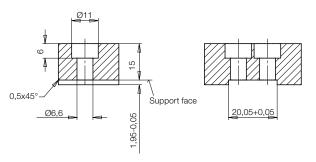
Lubricate at the latest after 500 clamping cylces the clamping slide via the central lubrication.

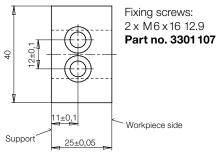

Never use the complete clamping stroke to guarantee safe clamping of the workpiece.

Max. operating temperature 80 °C. Operating conditions and other data see data sheet A 0.100.

Clamping stroke 5 mm: Part no. 4413001 Clamping force diagram (Height of the clamping jaw 15 mm) **Technical data** Clamping force max. [kN] Clamping force [kN] 9.5 Adaptor plate (accessory) Clamping stroke [mm] 5 Weight approx. 1.3 8 Jaw width [mm] 40 Part no. 0441300 6 Max. flow rate [cm3/s] 25 Stroke volume Clamping [cm3] 2.5 Unclamping 1.9 [cm3] Article available on request 2 1.66 Weight approx. [kg] 0 8 0 50 100 150 200 250 Operating pressure [bar] 15,5 Accessory: adaptor plate View from below 0 12 Socket head cap screw M6 x 20 Part no. **3300225** (included in the delivery) O-ring 8 x 1.5 86,5 ±0,02 Part no. 3000275 (included in the delivery) 25 ±0,02 16,5 98 M6 x 8 deep (6x) 30 80 Clamping and unclamping each Ø10 H7 x 7 deep for connecting insert 9210132 (included in the delivery), 15.5 14 ±0,02 **A** = Clamping Φ 14 12 ±0,02 **B** = Unclamping see also page F 9.300 Seat control and central lubrication **S** = Central lubrication with O-ring **3001 842** (5x1 mm) (included in the delivery) **L** = Air for seat control 12 ±0,02 14 ±0.02 14,5 Ø10 H7x7 deep (2x) 11 ±0.01 Stroke. 20 f7 Stroke M4 x 6 6 H7 deep (4x) ±0,03 58 ±0,03 63 55 Ra = 0,8 Ø8 H7 (2x) 28 86,5 21,3 17,5 G1/8 (3x) G1/8 (4x) 8 Accessory: adaptor plate Side views 16 25 M6 x 8 deep (8x) 11 lФ 0 28 0 ⇑ Seat control closed with threaded pin for socket head cap screw M6 DIN EN ISO 4762 52,5 28,5 Accessory: adaptor plate 0 View from above 28,5 120

Clamping stroke 30 mm


Technical data • Accessories • Dimensions



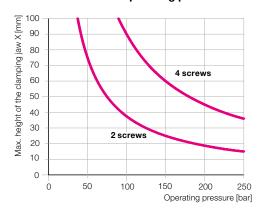
Accessory - clamping jaws

Versions	Clamping jaw blanks
Material	16 MnCr5 smooth

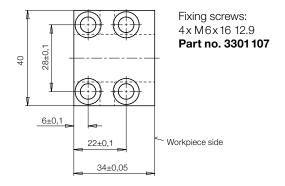
Clamping jaw: Part no. 3548070

Self-made clamping jaws

Clamping jaws and fixed jaws are manufactured according to the contour of the workpiece to be clamped.

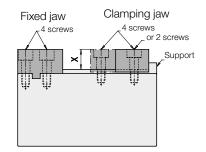

The max. height of the clamping jaw X at 250 bar operating pressure is indicated in the below chart.

If the operating pressure is lower, the clamping jaws and the fix jaws can be designed higher as per the below diagram.


Max. height of the clamping jaws X at max. operating pressure of 250 bar

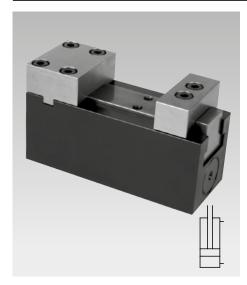
Fixing screws	M6x16-12.9
for clamping jaws	
X [mm] with 2 screws	15
X [mm] with 4 screws	36

Max. height of the clamping jaw X as a function of the operating pressure

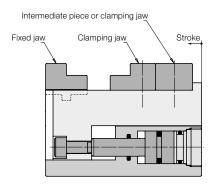

Part no. 3548071 Article available on request

Important note

The clamping jaws must always be supported by the provided support, since the fixing screws are not in the position to compensate the generated clamping forces.


Fixing of the clamping jaws

Fixture clamp with fixed jaw


max. clamping force 15 kN, jaw width 65 mm, double acting, max. operating pressure 250 bar

Advantages

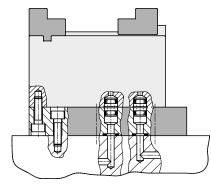
- Very compact design
- High rigidity and precision
- Strokes 5 and 45 mm
- Double-acting function
- Fixtures without tubes possible
- Exchangeable jaws
- Pneumatic contact or seat control in the fixed jaw possible
- Good swarf protection
- Port for central lubrication
- Mounting position: variable

Function

Application

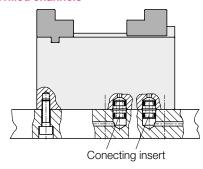
The fixture clamps are used for machining of dimensionally stable workpieces in single or multiple clamping fixtures.

Due to their compact design they can be arranged in a very limited space.


Fixture clamps are especially suitable for series manufacturing in automated mode.

The double-acting cylinder function combined with central lubrication and good swarf protection guarantees a high process safety.

Fixing from above

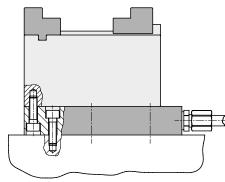

with accessory adaptor plate

Drilled channels

Fixing from below

Drilled channels

Description

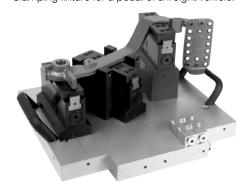

The fixture clamp with fixed jaw consists of a very small basic body with integrated hydraulic cylinder which actuates the movable jaw.

All threads and ports are at the bottom to allow a space-saving arrangement of several clamping points in a very limited space.

If fixing from below is not possible an adaptor plate for manifold mounting or tube connection is available. As accessory also blanks of clamping jaws are available for adaptation to the workpiece contour.

The fixed jaw can be equipped with a pneumatic seat control.

Fitting connection



Fixed jaw, clamping jaws and adaptor plate are not included in the delivery of the fixture clamp and have to be ordered separately as accessory.

Application example

Accessories

Clamping fixture for a pedal of a freight vehicle.

Important notes

The fixture clamp is only suitable for exterior clamping.

Lubricate at the latest after 500 clamping cycles the clamping slide via the central lubrication.

Never use the complete clamping stroke to guarantee safe clamping of the workpiece.

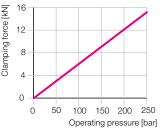
Max. operating temperature 80 °C.

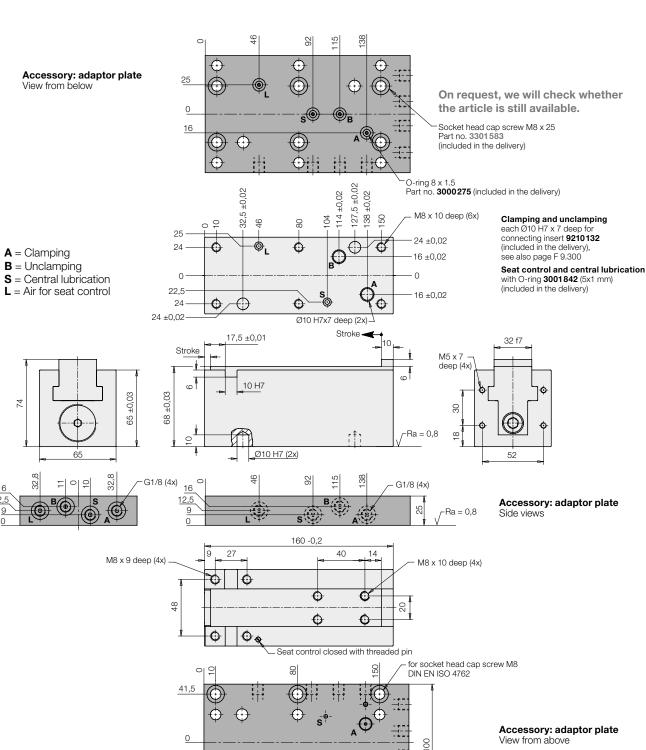
Operating conditions and other data see data sheet A 0.100.

Part no. 4413101

Technical data

Clamping force max.	[kN]	15
Clamping stroke	[mm]	5
Jaw width	[mm]	65
Max. flow rate	[cm ³ /s]	40
Stroke volume Clamping	[cm ³]	4
Unclamping	[cm ³]	3
Weight approx.	[kg]	5.05


Adaptor plate (accessory)


Weight approx.	[kg]	3.1
Part no.		0441310

Article available on request

Clamping force diagram

(Height of the clamping jaw 25 mm)

175

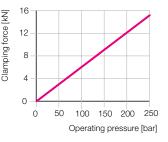
Clamping stroke 45 mm

Technical data • Accessories • Dimensions

Part no. 4413131

Technical data

Clamping force	[kN]	15	
Clamping stroke	[mm]	45	
Jaw width		[mm]	65
Max. flow rate		[cm ³ /s]	40
Stroke volume	Clamping	[cm ³]	36
	Unclamping	[cm ³]	27
Weight approx.		[ka]	ca. 7.0


Adaptor plate (accessory)

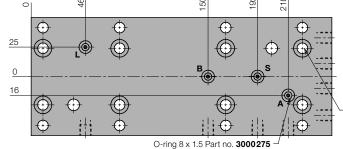
Part no.		0441313
Weight approx.	[kg]	3.8

Article available on request

Clamping force diagram

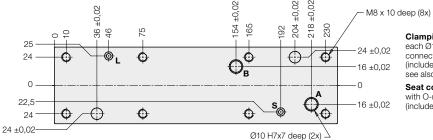
(Height of the clamping jaw 25 mm)

Accessory: adaptor plate


View from below

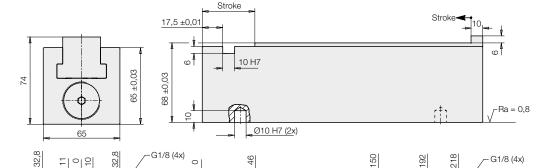
A = Clamping

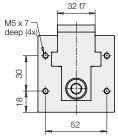
B = Unclamping


S = Central lubrication

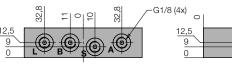
L = Air for seat control

On request, we will check whether the article is still available.

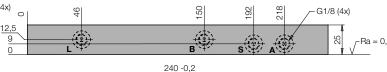

Socket head cap screw M8x25 Part no. 3301583 (included in the delivery)


(included in the delivery)

Clamping and unclamping each Ø10 H7x7 deep for connecting insert **9210132** (included in the delivery), see also page F 9.300


Seat control and central lubrication with O-ring **3001842** (5x1 mm) (included in the delivery)

27



M8 x 10 deep (8x)

M8 x 9 deep (4x)

84

0

0

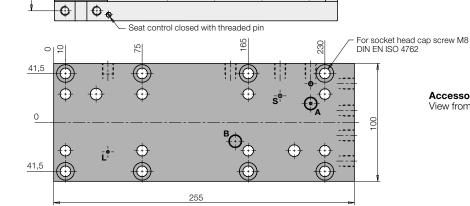
40

0

0

 \odot

0

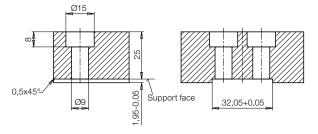

20

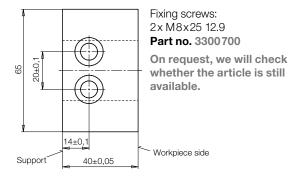
40

Φ

Φ

Accessory: adaptor plate Side views


Accessory: adaptor plate View from above


Accessory - clamping jaws

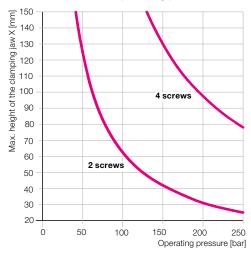
Versions Clamping jaw blanks 16 MnCr5 smooth Material

Clamping jaw:

Part no. 3548080

Self-made clamping jaws

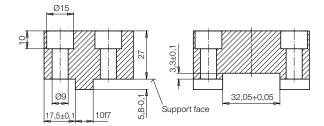
Clamping jaws and fixed jaws are manufactured according to the contour of the workpiece to be

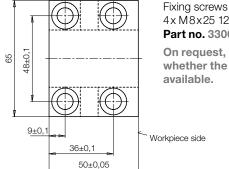

The max. height of the clamping jaw X at 250 bar operating pressure is indicated in the below chart.

If the operating pressure is lower, the clamping jaws and the fix jaws can be designed higher as per the below diagram.

Max. height of the clamping jaws X at max. operating pressure of 250 bar

Fixing screws for clamping jaws	M8x25 – 12.9
X [mm] with 2 screws	25
X [mm] with 4 screws	78


Max. height of the clamping jaw X as a function of the operating pressure

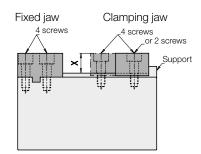


On request, we will check whether the article is still available.

Fixed jaw:

4x M8x25 12.9

Part no. 3300700


On request, we will check whether the article is still available.

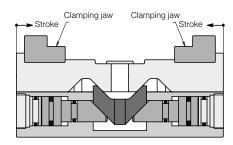
Workpiece side

Important note

The clamping jaws must always be supported by the provided support, since the fixing screws are not in the position to compensate the generated clamping forces.

Fixing of the clamping jaws

Fixture clamp, concentric clamping


max. clamping force 6.5 kN and 9 kN, jaw width 40 and 65 mm double acting, max. operating pressure 250 bar

Advantages

- Very compact design
- High rigidity
- Retention force higher than clamping force
- Repetitive accuracy ±0.02 mm
- 2 sizes
- Strokes 2 x 5 and 2 x 8 mm
- Double-acting function
- Fixtures without tubes possible
- Exchangeable jaws
- Good swarf protection
- Port for central lubrication
- Mounting position: variable

Function

Application

The fixture clamps are used for machining of dimensionally stable workpieces in single or multiple clamping fixtures.

Due to their compact design they can be arranged in a very limited space. Fixture clamps are especially suitable for series manufacturing in automated mode.

The double-acting cylinder function combined with central lubrication and good swarf protection guarantees a high process safety.

Description

The fixture clamp with concentric clamping function consists of a very slim basic body with 2 integrated hydraulic cylinders.

The piston forces are transfered via a guided connecting link to the two clamping slides so that a centric synchronism is obtained.

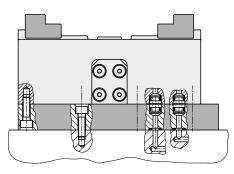
All threads and ports are at the bottom to allow a space-saving arrangement of several clamping points in a very limited space.

If fixing from below is not possible an adaptor plate for manifold mounting or tube connection is available. As accessory also blanks of clamping jaws are available for adaptation to the workpiece contour.

Important notes

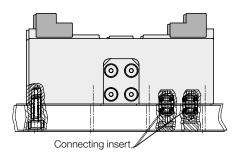
The fixture clamp is only suitable for exterior clamping.

Lubricate at the latest after 500 clamping cycles the clamping slide via the central lubrication. Never use the complete clamping stroke to guarantee safe clamping of the workpiece.

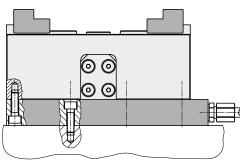

Max. operating temperature 80 °C.

Operating conditions and other data see data sheet A 0.100.

Fixing from above


with accessory adaptor plate

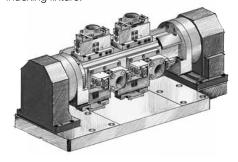
Drilled channels



Fixing from below

Drilled channels

Fitting connection



Accessories

Clamping jaws and adaptor plate are not included in the delivery of the fixture clamp and have to be ordered separately as accessory.

Application example

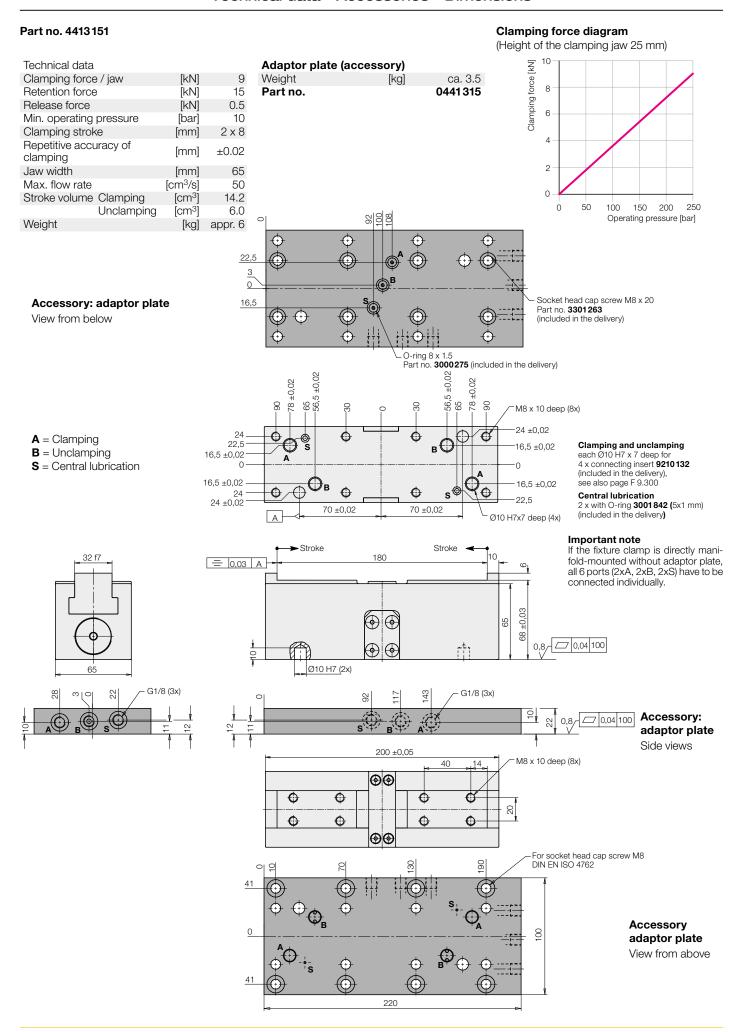
Concentric clamping of 8 flanges on a rotary indexing fixture.

Part no. 4413051 Clamping force diagram (Height of the clamping jaw 15 mm) Technical data Adaptor plate (accessory) Clamping force [kN] Clamping force / jaw 6.5 approx. 1.9 [kN] Weight 6 Retention force [kN] 8 Part no. 0441305 [kN] Release force 0.5 4 Min. operating pressure [bar] 10 Clamping stroke 2×5 [mm] 2 Repetitive accuracy of ±0.02 [mm] clamping Jaw width [mm] 40 0 50 Max. flow rate [cm3/s] 25 0 100 150 200 [cm³] Operating pressure [bar] Stroke volume Clamping 6.4 Unclamping [cm3] 3.2 Weight [kg] appr. 2.4 77,5 67,5 Accessory: adaptor plate 21,5 View from below 3,5 0 Socket head cap screw M6 x 20 Part no. 3300225 (included in the delivery) O-ring 8 x 1.5 Part no. **3000275** (included in the delivery) 45,5 39 ±0,02 59 ±0,02 59 ±0,02 q, 23,5 23,5 Clamping and unclamping each Ø10 H7 x 7 deep for 4 x connecting insert 9210 132 39 M6 x 8 deep (8x) **A** = Clamping (included in the delivery), see also page F 9.300 14 + 0.0212 ±0,02 **B** = Unclamping ·0 ·12 ±0,02 12 ±0,02 Central lubrication 2 x with O-ring 3001842 (5x1 mm) **S** = Central lubrication Φ Φ 14 ±0,02 14,5 (included in the delivery) $50,5\pm0,02$ 50,5 ±0,02 Ø10 H7x7 deep (4x) Important note! If the fixture clamp is directly manifold-mounted without adaptor plate, Stroke Stroke 143 all 6 ports (2xA, 2xB, 2xS) have to be = |0,03 | A connected individually. 58 ±0,03 \odot 0 22 0,8/ 0,04 100 0 **(** Ø8 H7 (2x) 67.5 G1/8 (3x) G1/8 (3x) 3,5 87 Accessory: adaptor plate 0,04 100 Side views 155 ±0,05 M6 x 8 deep (8x) ₩ Φ

Accessory: adaptor plate

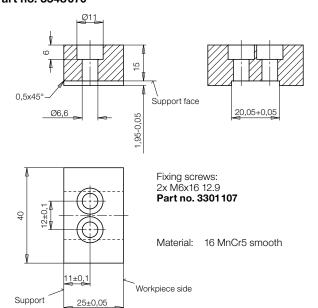
View from above

for socket head cap screw M6 DIN EN ISO 4762


2

170

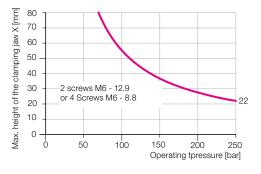
28,5


0

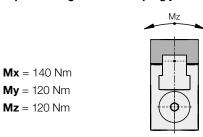
28,5

For fixture clamp 4413051

Clamping jaw blank 40 mm Part no. 3548070

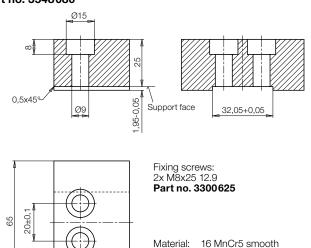


Self-made clamping jaws


Clamping jaws are manufactured according to the contour of the workpiece to be clamped.

The max. height of the clamping jaw X at 250 bar operating pressure is indicated in the below diagrams.

Max. height of the clamping jaw X for 4413051 as a function of the operating pressure



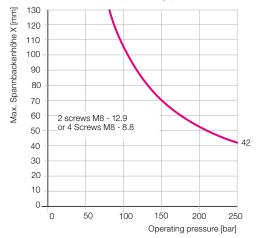
Admissible torques acting on the clamping jaws

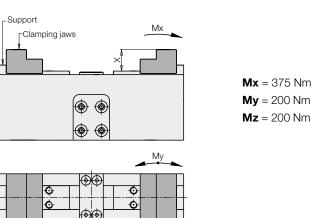
For fixture clamp 4413151

Clamping jaw blank 65 mm Part no. 3548080

Workpiece side

Important note

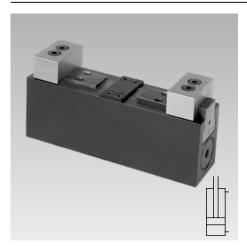

Support


The clamping jaws must always contact the provided support, since the fixing screws are not in the position to compensate the generated clamping forces.

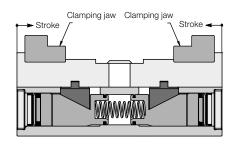
40±0.05

14±0,1

Max. height of the clamping jaw X for 4413151 as a function of the operating pressure



Fixture Clamp, Position Flexible


max. clamping force 8 kN, jaw width 40 mm double acting, max. operating pressure 250 bar

Advantages

- Very compact design
- High stiffness
- High clamping force with low contact forces
- Position flexible within the clamping range
- Double-acting function
- Fixtures without pipes possible
- Exchangeable jaws
- Good swarf protection
- Port for central lubrication
- Mounting position: any

Function

Application

Position-flexible fixture clamps can additionally clamp and support a workpiece, which is already positioned and clamped in fixed stops, at unstable workpiece sections.

Due to their compact design they can be arranged in a very limited space.

Fixture clamps are especially suitable for series manufacturing in automated mode.

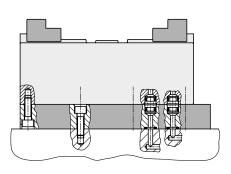
The double-acting cylinder function combined with central lubrication and good swarf protection guarantees a high process safety.

Description

The fixture clamp with position-flexible clamping function consists of a very slim basic body with 2 integrated hydraulic cylinders.

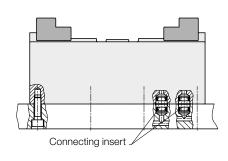
The piston forces are transmitted by two channels to the two clamping slides that can be moved independently from each other. During clamping both clamping slides contact the workpiece nearly without force (see page 3).

Only after that the clamping pressure and thereby the clamping force increases. Due to wedging of the clamping slides these are protected against displacement. Thereby the workpiece is floatingly held without deforma-

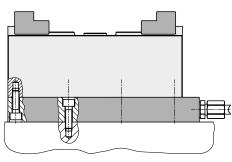

All threads and ports are at the bottom to allow a space-saving arrangement of several clamping points in a very limited space. If fixing from below is not possible an adaptor plate for manifold mounting or tube connection is avai-

As accessory also blanks of clamping jaws are available for adaptation to the workpiece contour.

Fixing from above

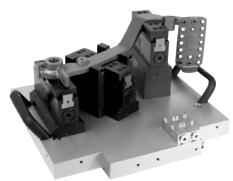

with accessory adaptor plate

Drilled channels

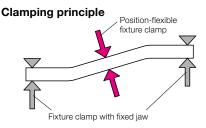


Fixing from below

Drilled channels



Pipe thread


Application example

Clamping fixture for a pedal of a freight vehicle.

Accessories

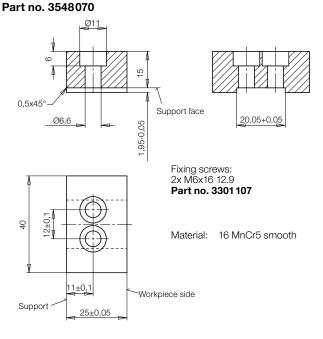
Clamping jaws and adaptor plate are not included in the delivery of the fixture clamp and have to be ordered separately as accessory.

Part no. 4413080 Clamping force diagram (Height of the clamping jaw 15 mm) Clamping force [kN] **Technical data** Adaptor plate (accessory Clamping force at 250 bar approx. 1,9 8 Weight [kN] 6 Retention force at 250 bar [kN] 10 Part no. 0441305 Min. operating pressure [bar] 25 4 Min. unclamping pressure 0,5 x clamping pressure 2 Clamping stroke [mm] 2 x 8 Jaw width [mm] 40 0 Max. flow rate* [cm³/s] 17 50 0 100 150 200 Stroke volume Clamping [cm³] 8.4 Unclamping [cm³] Operating pressure [bar] Weight [kg] approx 2.5 * See page 3 "Position-flexible clamping" **Accessory: Adaptor plate** 3,5 \odot View from below 3,5 Socket head cap screw M6 x 20 Part no. **3300225** (included in the delivery) O-ring 8 x 1.5 1 port B is blind (without set screw) Part no. 3000275 (included in the delivery) ±0,02 59 ±0,02 59 ±0,02 5,0 70,5 45,5 39±C .M6 x 8 deep (8x) Clamping and unclamping each Ø10 H7 x 7 deep for 4 x connecting insert 9210 132 39 14.5 (included in the delivery), see also page F 9.300 **A** = Clamping **O** 12 ±0.02 12 ±0,02 **B** = Unclamping **Central lubrication** 12 ±0,02 12 ±0.02 **S** = Central lubrication 2 x with O-ring **3000876** (3.68x1.78 mm) (included in the delivery) Φ 14 ±0,02 14.5 50.5 ±0.02 50.5 ±0.02 Ø10 H7x7 deep (4x) 3 set screws M3 with throttle Ø 0.7 Important note If the fixture clamp is manifold-Stroke Stroke mounted without adaptor plate, all = 0,03 A 5 ports (2xA, 1xB, 2xS) have to be individually connected. ±0,03 58 Ra = 0,8 Ø8 H7 (2x) G1/8 (3x) G1/8 (3x) Accessory: Adaptor plate Ra = 0.8Side views 155 ±0,5 M6 x 8 deep (8x) 0 0 Φ 0 0 for socket head cap screw M6 DIN EN ISO 4762 28,5 **Accessory: Adaptor plate** View from above Important notes The fixture clamp is only suitable for exterior clamping. Lubricate the clamping slide via the central lubrication at the latest after 500 clamping cycles. (Recommended: slide way oil ISO 69)

sheet A 0.100.

Never use the complete clamping stroke to guarantee safe clamping of the workpiece. Max. operating temperature 80 °C.

Operating conditions and other data see data

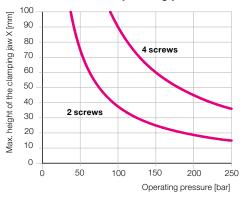

Accessories Position-flexible clamping

Self-made clamping jaws

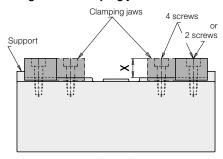
Clamping jaws are manufactured according to the contour of the workpiece to be clamped. The max. height of the clamping jaw X at 250 bar operating pressure is indicated in the opposite chart.

If the operating pressure is lower, the clamping jaws can be designed higher as per the opposite diagram.

Clamping jaw blank 40 mm

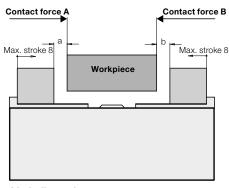

Max. height of the clamping jaws X at max. operating pressure of 250 bar

Fixing screws	M6x16 - 12.9
for clamping jaws	
X [mm] with 2 screws	15
X [mm] with 4 screws	36


Important note

The clamping jaws must always be supported by the provided support, since the fixing screws are not in the position to compensate the generated clamping forces.

Max. height of the clamping jaw X as a function of the operating pressure



Fixing of the clamping jaws

Position-flexible clamping

1. Position of the workpiece within the clamping range

Limit dimensions: a max. = 7 mm b max. = 7 mm

Recommendation:

Place the position-flexible fixture clamp as symmetrically as possible to the workpiece, so that the clamping jaws realise approximately the same stroke and also the smallest possible stroke.

2. Possible contact forces during clamping

Due to the slightly different factors of friction and an internal bracing spring the two clamping jaws do not uniformly contact the workpiece. One clamping jaw always hurries on ahead. This can already lead in case of very unstable sections to a deformation.

The possible contact force can be taken from the diagram.

3. Max. flow rate

With a max. flow rate of 17 cm³/s the clamping time is approx. 0.5 seconds. For unstable workpieces and / or heavy clamping jaws the flow rate in the supply line should be throttled so that the clamping jaws contact the workpiece as "smoothly" as possible.

If required, the two set screws M3 (\emptyset 0.7) in the ports A can be replaced.

Contact force as a function of the stroke difference (a-b) or (b-a)

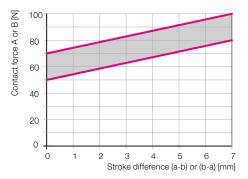
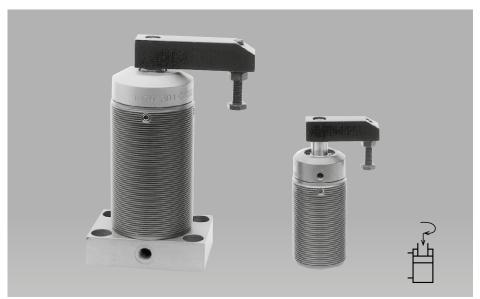



Diagram valid for horizontal mounting position. For vertical arrangement the weight of the clamping jaws has to be considered.

Pneumatic Swing Clamp

for adjustable magnetic sensors double acting, max. operating pressure 7 bar

The opposite figure shows a pneumatic swing clamp.
Clamping arm and flange are accessories

Application

Pneumatic swing clamps are used for applications which require only low clamping forces. The installed magnetic piston allows monitoring of clamping and unclamping position.

Description

When pressurising the element, the clamping arm swings and lowers by 90° to the clamping position and then lowers to the clamping point. The position monitoring gives the required information regarding the position of the piston, but not regarding the position of the clamping arm. Monitoring is made by electronic sensors (see accessory) which detect the magnetic field of the magnetic piston. The switching points can be continuously adjusted by displacement of the magnetic sensors.

Special features

When adjusting the clamping screw it has to be considered that for the swing motion a part of the total stroke is required.

Make sure that the swing motion can be effected without any interference.

When using special clamping arms with other lengths, the corresponding operating pressures as shown in the clamping force diagram must not be exceeded.

Pneumatic accessories

see data sheet J 7.400

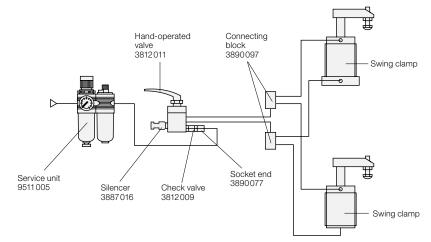
Installation

On fixtures flange-type swing clamps (flange is an accessory) or threaded versions with corresponding collar nuts can be easily adjusted to different workpiece heights.

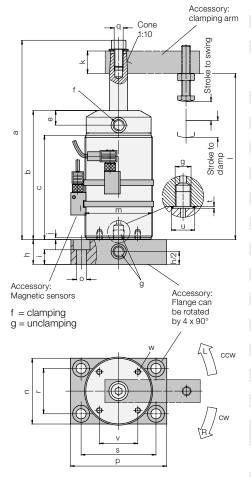
Material

The swing clamps are supplied in corrosion resistant quality. Guide bushing, housing, piston, and flange are made of hardcoated aluminium. The piston rod is made of corrosion resistant steel.

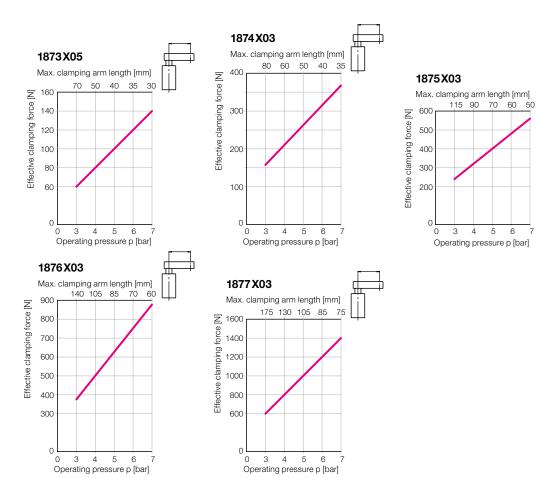
Important note


Operating of these pneumatic elements has to be effected with an additional service unit in order to guarantee that the clamping elements are supplied with correctly prepared compressed air.

Pneumatic swing clamp with accessories


- 1. Clamping arm (page 3)
- 2. Magnetic sensor with hose clamp (page 4)
- 3. Y-cable (see page G 2.140)

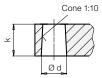
Connecting example

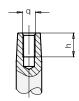


Technical data Dimensions • Effective clamping force

Piston Ø		[mm]	20	32	40	50	63
Piston rod Ø		[mm]	8	12	16	20	25
Stroke to swing		[mm]	7.5	9.5	17	18	23
Stroke to clamp		[mm]	7	9	15	15	18
Pulling force at	4 bar	[N]	105.5	276.4	422.2	659.7	1050.5
* air pressure	5 bar	[N]	131.9	345.5	527.7	824.6	1313.1
	6 bar	[N]	158.3	414.6	633.3	989.6	1575.8
Min. operating pr	essure	[bar]			3		
Max. operating p	ressure	[bar]			7		
Angle of rotation		[°]			$90^{\circ} \pm 2^{\circ}$		
Weight		[kg]	0.20	0.30	0.70	0.90	2.1
а		[mm]	114.3	133.1	182.6	198.5	240.5
b		[mm]	75	86.5	115	125	156
C		[mm]	58.5	67.5	93	101	124
е		[mm]	9.5	12	13	13	17
f		[mm]	M5	M5	G 1/8	G 1/8	G 1/4
g		[mm]	M5	M5	G 1/8	G 1/8	G 1/4
h		[mm]	12	16	22	22	25
i		[mm]	5.5	9.5	13	13	14
j		[mm]	2	2	2	2	2
□k		[mm]	12	16	20	25	30
1		[mm]	97.5	109.5	153	159	198
m		[mm]	M30x1.5	M40x1.5	M50x1.5	M60x1.5	M80x1.5
n		[mm]	30	38	50	58	75
0		[mm]	6.6	6.6	9	9	11
р		[mm]	60	65	80	85	110
q		[mm]	M4	M6	M8	M12	M10
r		[mm]	17	23	30	40	55
S		[mm]	43	50	60	66	88
t		[mm]	1.1	1.1	1.1	1.1	1.5
Øu		[mm]	9.8	9.8	14.3	14.3	19.8
□v		[mm]	14.2	17.6	26.88	34	38.9
W		[mm]	M4x5.5	M5x5	M5x7	M5x7	M8x10
Clockwise rotation	n						
Part No.			1873305	1874303	1875303	1876303	1877303
Counterclockwis	e rotatior	1					
Part No.			1873405	1874403	1875403	1876403	1877403
Accessory: flang	е						
Part No.			0345403	0345404	0345405	0345406	0345407

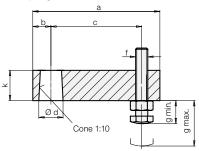
^{*} Effective clamping force see diagram

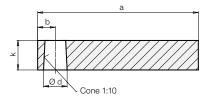



5

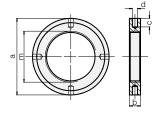
6

Accessory: Clamping arms • Mounting parts

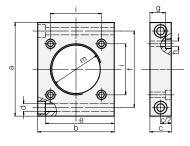

Seat of clamping arm (dimensions)


Swing clamp	$ \emptyset d + 0.05 $	□k	h	q
1873 X 05	7.85	12	9	M 4
1874X03	11.85	16	15	M 6
1875 X 03	15.85	20	19	M 8
1876X03	19.85	25	18	M 12
1877 X03	24.85	30	25	M 10

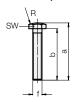
Clamping arm


Swing clamp	а	b	С	$ \emptyset d + 0.05 $	f	g min.	g max.	□k	Part no.
1873 X 05	42	7	30	7.85	M 4	8	20.5	12	0187324
1874 X03	52	10	35	11.85	M 6	12	17.5	16	0187424
1875 X03	70	12	50	15.85	M 6	12	28.5	20	0187524
1876 X03	82	14	60	19.85	M 8	15	25	25	0187624
1877 X03	104	18	75	24.85	M 10	19	36.5	30	0187724

Clamping arms for special versions


Swing clamp	а	b	\emptyset d + 0.05	□k	Part no.
1873 X 05	62	7	7.85	12	3548355
1874X03	72	10	11.85	16	3548356
1875 X 03	95	12	15.85	20	3548357
1876X03	116	14	19.85	25	3548353
1877 X03	143	18	24.85	30	3548358

Flanged nut


Swing clamp	Øa	b	С	Ød	m	Part no.
1873 X 05	50	10	7	4 x 5	M30 x 1.5	3527071
1874 X03	62	12	8	4 x 6	M40 x 1.5	3527040
1875 X03	75	13	10	6 x 6	M50 x 1.5	3527041
1876 X03	90	13	10	6 x 6	M60 x 1.5	3527042
1877 X03	115	16	12	6 x 8	M80 x 1.5	3527043

Threaded nut

Swing clamp	а	b	С	Ød	е	f	g	Øh	i	m	Part no.
1873 X 05	65	55	15	5.5	49.3	50	10.4	4.5	30	M30 x 1.5	3527073
1874X03	80	65	15	5.5	59.3	60	10.4	4.5	40	M40 x 1.5	3527044
1875 X03	95	75	20	6.6	68.2	75	14.3	5.5	50	$M50 \times 1.5$	3527045
1876 X03	110	90	25	9	81	90	18.2	6.6	60	M60 x 1.5	3527046
1877 X03	140	120	25	11	109	115	16	9	75	M80 x 1.5	3527047

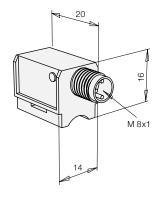
Contact bolts, dome head

Swing clamp	а	b	f	R	SW	Part no.
1873 X 05	32.5	30	M 4	15	7	3614141
1874X03	33.5	30	M 6	20	10	3614137
1875 X03	48.5	45	M 6	20	10	3614138
1876 X03	50	45	M 8	20	13	3614139
1877 X03	66.5	60	M 10	35	17	3614140

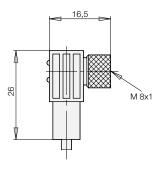
Accessory Magnetic sensors

Compared with traditional reed switches the electronic magnetic sensors offer the following advantages:

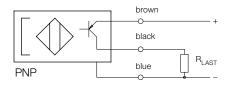
- Indifference to shock and vibration
- Bounce-free output signal
- Only one switching point
- Wear resistant
- Protection against reverse battery
- Protected against short circuits


Electric connection is made as per traditional inductive proximity switches.

Up to four magnetic sensors can be connected in series.

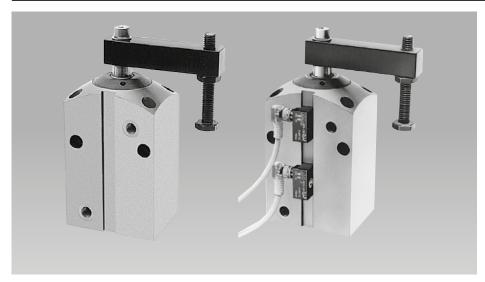

The magnetic sensor is mounted at the swing clamp body with a hose clamp.

Hose clamp for swing clamp	Part no.
1873X05	3829132
1874 X03	3829133
1875X03	3829120
1876X03	3829134
1877X03	3829135


Electronic magnetic sensor

Connecting cable with right angle plug

Connecting scheme



Technical data	Electronic magnetic sensor	Connecting cable with right angle plug
Cylinder body material	PA 12 - GF 30; yellow	
Voltage	10 – 30 V DC	10 – 30 V DC
Residual ripple	max. 10 %	
Current load ILAST	200 mA	
Current consumption	< 2 mA	
Voltage drop (max. load)	< 1.8 V	
Output	pnp, interlock	
Protected against short circuits	yes	
Protection against reverse battery	installed	
Switching frequency	1 kHz	
Switching hysteresis	< 1 mm	
Protection as per DIN 40050	IP 67	IP 67
Environmental temperature	-25°C up to +70°C	-25°C up to +90°C
Plug connection	M8 x 1 plug	M8 x 1 plug
LED	Function display (red)	Voltage (green) Function display (yellow)
Cable, length of cable		PUR, 5 m
Part No. (1 off)	3829119	3829099

Pneumatic Swiwng Clamp

block-type, for adjustable magnetic sensors double acting, max. operating pressure 7 bar

Advantages

- Compact design
- Easy adjustment of switching point positions
- Diverse mounting possibilities
- 5 standard sizes are available
- optionally with thread connection or for manifold mounting with O-ring sealing

Application

Pneumatic swing clamps are used for applications which require only low clamping forces. The installed magnetic piston allows monitoring of clamping and unclamping position.

Description

When pressurising the element, the clamping arm swings and lowers by 90° to the clamping position and then lowers to the clamping point. The position monitoring gives the required information regarding the position of the piston, but not regarding the position of the clamping arm. Monitoring is made by electronic sensors (see accessory) which detect the magnetic field of the magnetic piston. The switching points can be continuously adjusted by displacement of the magnetic sensors.

Special features

When adjusting the clamping screw it has to be considered that for the swing motion a part of the total stroke is required.

Make sure that the swing motion can be effected without any interference.

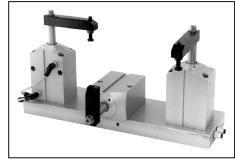
When using special clamping arms with other lengths, the corresponding operating pressures as shown in the clamping force diagram must not be exceeded.

Pneumatic accessories

see data sheet J 7.400.

Installation

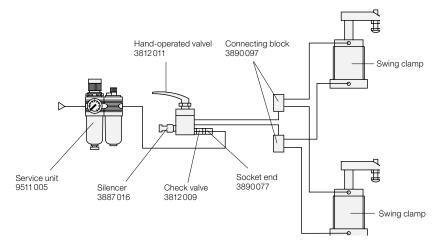
The block-type offers universal mounting possibilities.

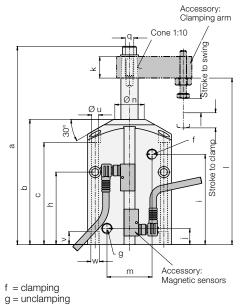

Material

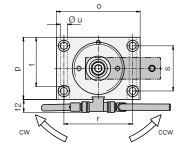
The swing clamps are supplied in corrosion resistant quality. Guide bushing, housing, piston, and flange are made of hardcoated aluminium. The piston rod is made of corrosion resistant steel.

Important notes

Operating of these pneumatic elements has to be effected with an additional service unit in order to guarantee that the clamping elements are supplied with correctly prepared compressed air.

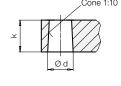

Operating conditions, tolerances and other data see data sheet A 0.100.

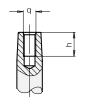

Versions


- Versions with pipe thread
 (Figure at the left-hand side) see page 2
- Manifold mounting with O-ring sealing Version K (Figure in the centre), see page 3
- Manifold mounting with O-ring sealing Version B (Figure at the right-hand side), see page 3

Connection example

Threaded body Technical data • Accessories



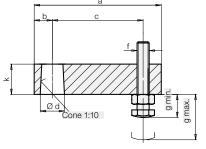

Piston Ø	[mm]	20	32	40	50	63
Pistron rod Ø	[mm]	8	12	16	20	25
Stroke to swing	ľmmĺ	7.5	9.5	17	18	23
Stroke to clamp	[mm]	7	9	15	15	18
	bar [N]	105.5	276.4	422.2	659.7	1050.5
* air 5	bar [N]	131.9	345.5	527.7	824.6	1313.1
pressure 6	bar [N]	158.3	414.6	633.3	989.6	1575.8
Min. operating press	ure [bar]			3		
Max. operating press	sure [bar]			7		
Angle of rotation	[°]			$90^{\circ} \pm 2^{\circ}$		
Weight	[kg]	0.35	8.0	1.3	2.0	3.33
a	[mm]	120.5	143	189.5	203.5	239.5
b	[mm]	76	94.5	120.5	130	150
C	[mm]	55.5	72	99	104	118
f	[mm]	M5	M5	G 1/8	G 1/8	G 1/4
g h	[mm]	M5	M5	G_1/8	G 1/8	G 1/4
n :	[mm]	41	59.5	71.5	76	80
!	[mm]	53.5	63	88	95	100
J ⊠ k	[mm]	17 12	20 16	19 20	17.5 25	18 30
△ K	[mm] [mm]	103.5	119.5	159	164	197
m	[mm]	22	28	42	44	58
Øn	[mm]	14	24	30	38	42
0	[mm]	54	68	80	90	106
p	immi	35	52	60	70	85
q	[mm]	M4	M6	M8	M12	M10
r	[mm]	40	55	64	72	86
S	[mm]	22	38	42	48	66
t	[mm]	25	40	46	50	70
Øu	[mm]	5.5	6.5	6.5	8.5	8.5
V	[mm]	10	12	12	15	15
W	[mm]	M8	M8	M8	M10	M10
Clockwise rotation						
Part no.		1873 106	1874 106	1875 106	1876106	1877106
Counterclockwise ro	tation					
D .		4070000	4074000	4075000	4070000	4077000

Part no. * Effective clamping force see diagram (page 3, column 1)

1873206

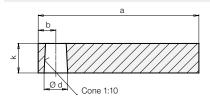
Seat of clamping arm

Swing clamp	Ø d + 0.05	□k	h	q	
1873 X 06	7.85	12	9	M 4	
1874 X 06	11.85	16	15	M 6	
1875 X06	15.85	20	19	M 8	
1876X06	19.85	25	18	M 12	
1877 X06	24.85	30	25	M 10	


1874206

1875206

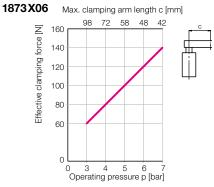
1876206

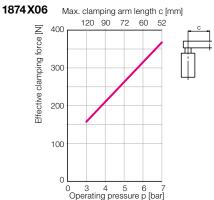

1877206

Clamping arm

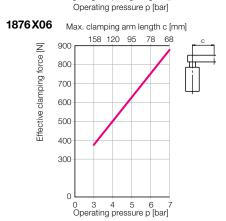
Swing clamp	а	b	С	Ø d + 0.05	f	g min.	g max.	□k	Part no.
1873 X06	54	7	42	7.85	M 4	8	28	12	0187326
1874X06	68	10	52	11.85	M 6	12	27	16	0187426
1875 X 06	78	12	58	15.85	M 6	12	42	20	0187526
1876X06	90	14	68	19.85	M 8	15	42	25	0187626
1877 X06	110	18	80	24.85	M10	19	56	30	0187726

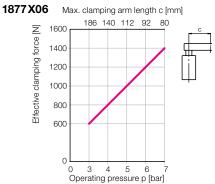
Clamping arms for special versions

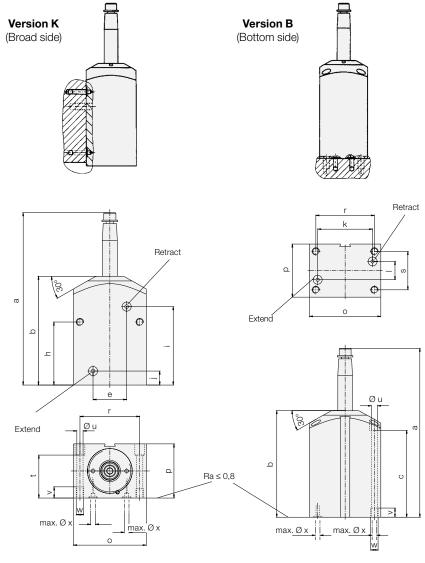

Swing clamp	а	b	Ø d $^{+ 0.05}$	□k	Part no.
1873 X 06	62	7	7.85	12	3548355
1874 X 06	72	10	11.85	16	3548356
1875 X 06	95	12	15.85	20	3548357
1876X06	116	14	19.85	25	3548353
1877 X06	143	18	24.85	30	3548358


Contact bolt, dome head

Swing clamp	а	b	f	R	sw	Part no.
1873X06	32.5	30	M 4	15	7	3614 141
1874 X06	33.5	30	M 6	20	10	3614137
1875 X06	48.5	45	M 6	20	10	3614138
1876X06	50	45	M 8	20	13	3614139
1877 X06	66.5	60	M 10	35	17	3614140


Manifold mounting with O-ring sealing Technical data


Effective clamping force



Swing clamp

Clockwise rotation		1873 106X	1874 106 X	1875 106X	1876 106 X	1877 106X		
Counterclockwise rota	ation	1873 206X	1874206X	1875 206 X	1876 206X	1877 206X		
Piston Ø	[mm]	20	32	40	50	63		
Piston rod Ø	[mm]	8	12	16	20	25		
a	[mm]	120.5	143	189.5	203.5	239		
b	[mm]	76	94.5	120.5	130	150		
C	[mm]	55.5	72	99	104	118		
е	[mm]	16	28	36	44	58		
h	[mm]	41	59.5	71.5	76	80		
i	[mm]	53.5	63	88	95	100		
j	[mm]	20	20	19	17.5	18		
k	[mm]	39	53	60	72	86		
	[mm]	_	14	20	20	20		
0	[mm]	54	68	80	90	106		
p	[mm]	35	52	60	70	85		
r	[mm]	40	55	64	72	86		
S	[mm]	22	38	42	48	66		
t	[mm]	25	40	46	50	70		
Øu	[mm]	5.5	6.5	6.5	8.5	8.5		
V	[mm]	10	12	12	15	15		
W	[mm]	M8	M8	M8	M10	M10		
max. Ø x	[mm]	5	5	5	5	5		
Dimensions O-ring	[mm]	7x1.5	7x1.5	7x1.5	7x1.5	7x1.5		
Part no., spare O-ring 3000 342 3000 342 3000 342 3000 342 3000 342 O-rings are included in delivery. Other dimensions see page 2.								

Order

Please add the corresponding identification letter to the **Part no.** of the required pneumatic block-type swing clamp: ${\bf K}$ or ${\bf B}$

Example of ordering:

Pneumatic block-type swing clamp 1875-106 with air supply on the broad side

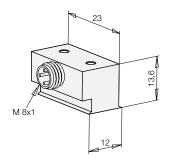
Part no. 1875-106 K

Accessory: Magnetic sensors

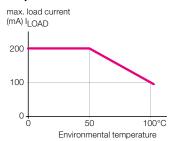
Compared with traditional reed switches the electronic magnetic sensors offer the following advantages:

- Indifference to shock and vibration
- Bounce-free output signal
- Only one switching point
- Wear resistant
- Protection against reverse battery
- Protected against short circuits

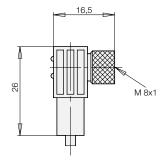
Electric connection is made as per traditional inductive proximity switches; up to four magnetic sensors can be connected in series.

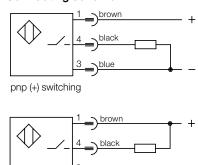

Minimum distance of the switching points: 6 mm.

Important notes


Steel can influence the magnetic field of the magnetic piston and thereby the position of the switching points. If there is the same influence for each stroke (e.g. because of adjoining steel components) it can be compensated by displacing the magnetic sensors. But if the influence differs from stroke to stroke, as e.g. in the case of swarf, a cover has to be provided 30 mm over the magnetic sensors. Covers have to be provided to protect the cylinders against ferritic swarf.

Further information about voltage supply for position controls see data sheet A 0.120.


Electronic magnetic sensor


Temperature curve

Connecting cable with right angle plug

Connecting scheme

Connection cable with right angle plug

npn (-) switching

Technical data

Voltage Residual ripple Current load I_{I OAD}

Cylinder body material

Current consumption
Voltage drop (max. load)
Protected against short circuits
Protection against reverse battery

Switching frequency Switching hysteresis Protection as per 40050 Environmental temperature

Plug connection

LED

Electronic magnetic sensor aluminium black lacquered

aluminium black lacquered	
10 – 30 V DC	10 – 30 V DC
max. 10%	
200 mA – up to 50 °C 150 mA – at 75 °C 100 mA – at 100 °C	
< 15 mA	
< 2 V	
yes	
installed	
1 kHz	
3 mm	
IP 67	IP 67
−25 °C up to +100 °C	−25 °C up to +90 °C
M8 plug	M8 plug
no	Voltage (green) Function display (yellow)
	PUR, 5 m

ana

3829099

Cable, length of cable Output (interlock) Part no.

Range of magnetic sign

ana

3829234

Further accessory

see data sheet G 2.140

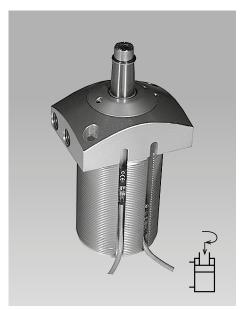
- Pin-and-socket connector
- Y-distributor
- Reversing plug
- Voltage regulator

wing stroke	Unclamping position	×
Clamping stroke Swing stroke	Monitored clamping position	×\[\]

ngn

3829240

Туре	≈ x [mm]
1873 X06	4
1874 X06	4
1875 X06	5
1876 X06	6
1877 X06	7


npn

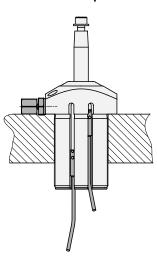
3829124

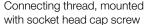
Pneumatic Swing Clamp

top flange-type, for adjustable magnetic sensors double acting, max. operating pressure 7 bar

Application

Pneumatic swing clamps are used for applications which require only low clamping forces. The installed magnetic piston allows monitoring of clamping and unclamping position.


Description


When pressurising the element, the clamping arm swings and lowers by 90° to the clamping position and then lowers to the clamping point. The position monitoring gives the required information regarding the position of the piston, but not regarding the position of the clamping arm. Monitoring is made by electronic sensors (see accessory) which detect the magnetic field of the magnetic piston. The switching points can be continuously adjusted by displacement of the magnetic sensors.

Special features

When adjusting the clamping screw it has to be considered that for the swing motion a part of the total stroke is required. Make sure that the swing motion can be effected without any interference. When using special clamping arms with other lengths, the corresponding operating pressures as shown in the clamping force diagram must not be exceeded.

Installation examples

Manifold mounting

Connecting thread, height adjustment by collar nuts

Manifold mounting with O-ring sealing, air supply through drilled channels in the fixture plate

Installation

On fixtures flange-type swing clamps or threaded versions with corresponding collar nuts can be easily adjusted to different workpiece heights.

Material

The swing clamps are supplied in corrosion resistant quality. Guide bushing, housing and piston are made of hardcoated aluminium. The piston rod is made of corrosion resistant steel.

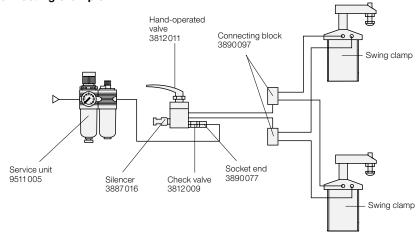
Important notes

Operating of these pneumatic elements has to be effected with an additional service unit in order to guarantee that the clamping elements are supplied with correctly prepared compressed air.

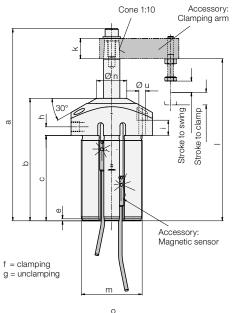
Operating conditions, tolerances and other data see data sheet A 0.100.

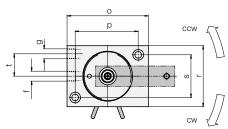
Advantages

- Low built-in design possible
- Height adjustment by threaded body and collar nut
- Flange mounting by socket head cap screws
- 5 standard sizes are available
- optionally with thread connection or for manifold mounting with O-ring sealing


Versions

- Threaded body for height adjustment
- Manifold mounting with O-ring sealing


Pneumatic accessories

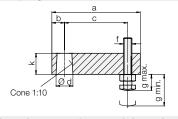

see data sheet J 7.400.

Connecting example

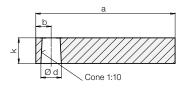
Threaded body Technical characteristics • Accessories



Piston Ø	[mm]	20	32	40	50	63
Piston rod Ø	[mm]	8	12	16	20	25
Stroke to swing	[mm]	7.5	9.5	17	18	23
Stroke to clamp	[mm]	7	9	15	15	18
Force to pull at 4 bar	[N]	105.5	276.4	422.2	659.7	1050.5
* air 5 bar	[N]	131.9	345.5	527.7	824.6	1313.1
pressure 6 bar	[N]	158.3	414.6	633.3	989.6	1575.8
Min. operating pressure	[bar]			3		
Max. operating pressure	[bar]			7		
Angle of rotation	[0]	0.0	0.0	$90^{\circ} \pm 2^{\circ}$		0.0
Weight	[kg]	0.3	0.6	1.0	1.5	2.6
a	[mm]	120	143	189	202	239.5
b	[mm]	76	94.5	120.5	130	150
C	[mm]	48 2	61 2	84 2	85 2	91
e f	[mm]	M5	M5	G 1/8	G 1/8	G 1/4
	[mm] [mm]	M5	M5	G 1/8	G 1/8	G 1/4
g h	[mm]	6	6.5	8.5	10	13
i	[mm]	7.5	11	15	19	27
□k	[mm]	12	16	20	25	30
I	[mm]	103.5	119.5	159	164	197
m	[mm]	M40x1.5	M52x1.5	M60x1.5	M70x1.5	M85x2
Øn	[mm]	14	24	30	38	42
0	[mm]	60	68	80	90	106
p	[mm]	44	54	62	72	86
r	[mm]	40	52	60	70	85
S	[mm]	25	36	42	48	66
t	[mm]	12.8	15	22	23	30.3
Øu	[mm]	5.5	6.5	6.5	8.5	8.5
Direction of rotation cw						
Part no.		1873 103	1874 103	1875 103	1876 103	1877 103
Direction of rotation ccw Part no.		1873203	1874203	1875203	1876203	1877203


^{*} Effective clamping force see diagram (page 3)

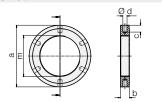
Seat of clamping arm


Swing clamp	Ø d + 0.05	□ k	h	q	
1873 X03/ -X05	7.85	12	9	M 4	
1874 X03/ -X05	11.85	16	15	M 6	
1875 X03/ -X05	15.85	20	19	M 8	
1876 X03/ -X05	19.85	25	18	M 12	
1877 X03/ -X05	24.85	30	25	M 10	

Clamping arm

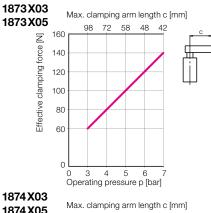
Swing clamp	а	b	С	Ø d + 0.05	f	g min.	g max.	□k	Part no.
1873 X03/ -X05	54	7	42	7.85	M 4	8	28	12	0187326
1874X03/ -X05	68	10	52	11.85	M 6	12	27	16	0187426
1875 X03/ -X05	78	12	58	15.85	M 6	12	42	20	0187526
1876 X03/ -X05	90	14	68	19.85	M 8	15	42	25	0187626
1877 X03/ -X05	110	18	80	24.85	M10	19	56	30	0187726
1877 X03/ -X05	110	18	80	24.85	M10	19	56	30	0187726

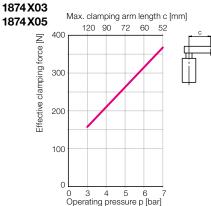
Clamping arms for special versions

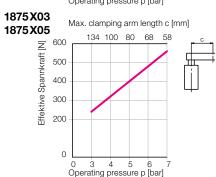

Swing clamp	а	b	Ø d + 0.05	□k	Part no.
1873 X03/ -X05	62	7	7.85	12	3548355
1874X03/ -X05	72	10	11.85	16	3548356
1875 X03/ -X05	95	12	15.85	20	3548357
1876X03/ -X05	116	14	19.85	25	3548353
1877 X03/ -X05	143	18	24.85	30	3548358

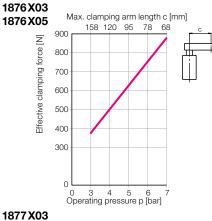
Contact bolts, dome head

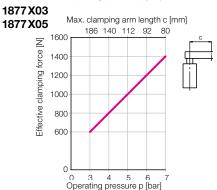
Swing clamp	а	b	f	R	SW	Part no.
1873 X03/ -X05	32.5	30	M 4	15	7	3614141
1874 X03/ -X05	33.5	30	M 6	20	10	3614137
1875 X03/ -X05	48.5	45	M 6	20	10	3614138
1876 X03/ -X05	50	45	M 8	20	13	3614139
1877 X03/ -X05	66.5	60	M10	35	17	3614140

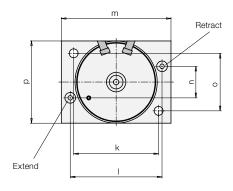

Flange nut

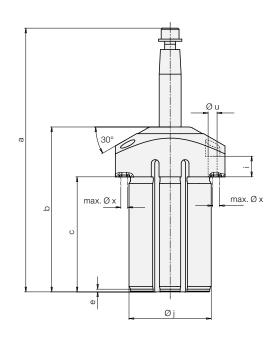



Swing clamp	Ø a	b	С	Ød	m	Part no.
1873 X03	62	12	8	4x6	M 40x1.5	3527040
1874 X03	80	13	10	6x6	M 52x1.5	3527082
1875 X 03	90	13	10	6x6	M 60x1.5	3527042
1876X03	100	14	12	6x8	M 70x1.5	3527083
1877 X03	120	16	12	6x8	M 85x2.0	3527084


Manifold mounting with O-ring sealing Technical data


Effective clamping force





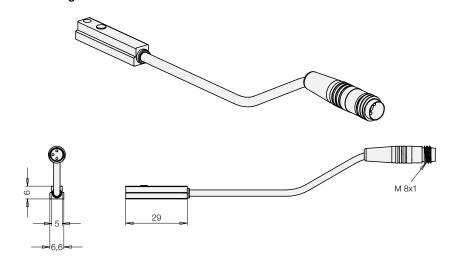
Clamping force Schwenkspanner

Clockwise rotation Counterclockwise rotation	1	1873105 1873205	1874 105 1874 205	1875 105 1875 205	1876105 1876205	1877 105 1877 205
Piston Ø	[mm]	20	32	40	50	63
Piston rod Ø	[mm]	8	12	16	20	25
а	[mm]	120	143	189	202	239.5
b	[mm]	76	94.5	120.5	130	150
C	[mm]	48	61	84	85	91
е	[mm]	2	2	2	2	2
i	[mm]	7.5	11	15	19	27
Øj	[mm]	40	52	60	70	85
k	[mm]	44	54	62	72	86
I	[mm]	47	56	67	76	90
m	[mm]	60	68	80	90	106
n	[mm]	18	27	23	36	40
0	[mm]	25	36	42	48	66
р	[mm]	40	52	60	70	85
Øu	[mm]	5.5	6.5	6.5	8.5	8.5
max. Ø x	[mm]	3.5	3.5	3.5	5	5
Piston rod Ø		4.47x1.78	4.47x1.78	4.47x1.78	7x1.5	7x1.5
Part no. spare O-ring		3000968	3000968	3000968	3000342	3000342

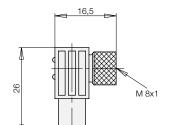
O-rings are included in delivery. Other dimensions see page 2.

Accessory: Magnetic sensors

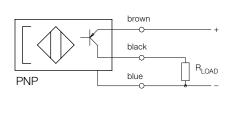
Compared with traditional reed switches the electronic magnetic sensors offer the following advantages:


- Indifference to shock and vibration
- Bounce-free output signal
- Only one switching point
- Wear resistant
- Protection against reverse battery
- Protected against short circuits

Electric connection is made as per traditional inductive proximity switches; up to four magnetic sensors can be connected in series.


Important notes

Steel can influence the magnetic field of the magnetic piston and thereby the position of the switching point. If the pneumatic swing clamp is flange mounted on a steel plate, the sensor has to be adjusted by displacement in the mounted condition. If the magnetic sensor is outside of a protecting bore hole and is exposed to changing influences of adjacent steel parts, e.g. swarf, protection for 30 mm has to be provided.


Electronic magnetic sensor

Connecting cable with coupling

Connecting scheme

Technical data	Electronic magnetic sensor	Connecting cable with coupling
Cylinder body material	PA 6	
Voltage	10 – 30 V DC	10 – 30 V DC
Residual ripple	max. 10%	
Current load I _{LOAD}	200 mA	
Current consumption	≤ 25 mA	
Protected against short circuits	yes	
Protection against reverse battery	installed	
Switching hysteresis	typ. 1.5 mm	
Protection as per IEC 529	IP 65	IP 67
Environmental temperature	–25°C up to +70°C	–25°C up to +90°C
Plug connection	M8 plug	M8 coupling
Function display	LED (yellow)	LED (yellow)
Voltage	no	LED (green)
Cable, length of cable	0.26 m	PUR, 5 m
Output	pnp	
Part no. (1 off)	3829147	3829099

Further accessories

see data sheet G 2.140

- Pin-and-socket connector
- Y-distributor
- Reversing plug
- Voltage regulator

Work supports

Accessories for Venting of the Spring Area

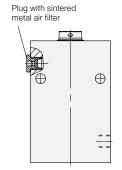
of single-acting clamping elements and work supports

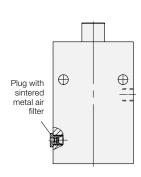
Introduction

Due to increased use of coolants and cutting fluids in metal cutting machining there is also an increased danger that some very aggressive fluids penetrate into the spring areas of single-acting clamping elements and work supports, causing malfunctions.

It is important to realize these problems already in the period of design. The following versions show possible solutions to the above problems.

Catalogue elements with venting of the spring area


Single-acting clamping elements


without venting port

with venting port

with venting por

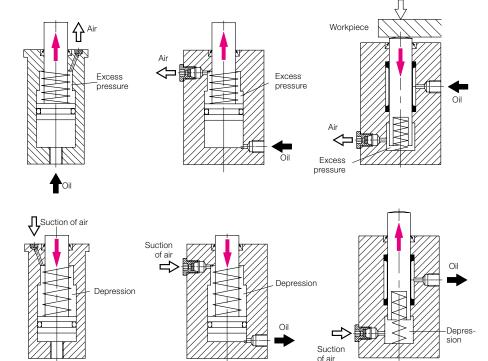
See data sheets:

B 1.310 B 1.480 B 1.309 B 1.5091 B 1.570 B 1.7441 B 1.849 B 1.880 B 1.881 B 1.891 B 1.892

B 1.900 B 1.943 B 1.910 B 1.944 B 1.911 B 1.9470 B 1.914 B 1.9471 B 1.921 B 1.9472 B 1.9401 B 1.950 B 1.9405 B 1.9501 B 1.942 B 1.9503

Why venting has to be made?

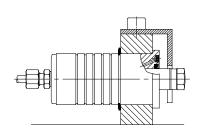
Excess pressure or depression in the spring area change the spring forces which leads to malfunctions.


Formation of condensation water promotes rust formation and can lead to a complete failure of the elements.

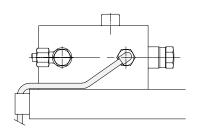
Leakages of hydraulic seals must drain off to the exterior without pressure, otherwise there will be malfunctions.

Dust and swarf are retained by sintered metal air filters.

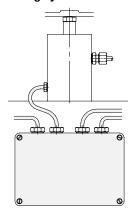
Liquids are the real problem, because they are drawn off through the air filter. Thereby the breathing spring area is reduced, a higher excess pressure or depression is caused and the function is impaired.


What happens during venting?

Precautions


If there is the danger that liquids enter the system, you have to prevent it.

Cover


Clamping elements without venting port can be covered, but due to the nowadays usual quantities of coolants this does not seem to be successfull. In such applications you should use other clamping elements, preferably double-acting elements.

Venting hose

Connection of a venting hose is indicated if the opening is displaced to a point where no liquid can penetrate.

Closed venting system

The spring area shall be increased by the connection of an additional area so that only a little excess pressure or depression will be generated so that neither the functioning of the elements will be influenced nor liquids will be drawn off. Electric wiring boxes provided with connecting threads for venting hoses proved to be worthwhile. The volume of this "additional area" should be **ten times the stroke volume** of all connected elements.

Important note

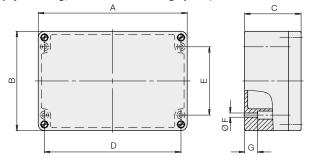
In the case of temperature variations, condensation water can precipitate in a closed ventilation system. Possibly also coolants can enter into the system through the connected clamping elements and work supports.

Recommendation

Open the empty housing regularly (depending on the operating conditions) and dry the interior.

Venting accessory

Plastic hose for the following connecting eleme	nts	Part no	
black		3890131	١
Insertion nipple	fitting Size	Part no	
	M 5	389009	1
	1/8	3890092	2
	1/4	3890093	3


L-insertion nipple fitting										
swivelling	Size	Part no.								
	M 5	3890094								
	1/8	3890095								
	1/4	3890096								

L-insertion nipple distributor Part no. 3890097 Hose connection L-piece 90° Part no.

3890098

Steel tubes and fittings see data sheet F 9.300

Empty housing, material: aluminium, grey lacquered

Volume	[cm ³]	400	1,600	2,800
Α	[mm]	125	160	260
В	[mm]	80	160	160
С	[mm]	57	91	91
D	[mm]	113	140	240
E	[mm]	52	110	110
ØF	[mm]	4.3	6.3	6.3
G	[mm]	10	21	21
Dart no		6350907	31/11188	6355833

Calculation example for a clamping fixture with the elements below

Quantity	Element	Piston / bolt Ring-Ø [mm]	Stroke [mm]	Air volume per stroke [cm³]
1	Block cylinder 1513000	25/16	8	2.3
2	Swing clamp 1885104	40	22	55.3
2	Threaded work support 1957002	50	20	78.5
Total				136.1

Selection of empty housing: 136.1 x factor 10 = 1,361 cm³ suitable empty housing (1,600 cm³)

Part no. 3141 188

Magnetic Sensors for Position Monitoring

of block cylinders and pneumatic swing clamps

Advantages

- Compact design, minimum space requirement
- Adjustable switching points by displacement of the sensor
- Monitoring of several positions
- Indifference to shock and vibration
- Bounce-free output signal
- Only one switching point
- Wear resistant
- Protected against reverse battery
- Protected against short circuits
- Sensor locking with 2 screws

Magnetic sensors Lengthwise slot Ring magnet Aluminium or bronze housing

Application

Magnetic sensors are used for position monitoring of block cylinders and pneumatic swing clamps of the following data sheets:

- Block cylinders with aluminium or bronze housing B 1.554
- Block cylinder with guide housing B 1.738
- Pneumatic swing clamp J 7.202

Monitoring of several positions

In the two lengthwise slots of the cylinder body several sensors can be fixed (depending on the length of the slot or the stroke).

In one slot, the minimum distance between the switching points is 6 mm; with two slots it is 3 mm.

Influencing the magnetic field with adjacent, magnetisable components (e.g. steel parts)

In order to guarantee perfect functioning, it is recommended to maintain a distance of at least 25 to 30 mm between magnetic sensor and magnetisable components. The function is indeed possible with a smaller distance but this depends highly on the individual circumstances for fitting. Thus ordinary steel bolts can also normally be used for fastening the cylinder. In borderline cases, screws of non-magnetisable steel (e.g. VA screws) can cause an improvement in the magnetic field.

Influencing the magnetic field with adjacent magnetic sensors

If several cylinders with magnetic sensors are installed directly adjacent to one another, the magnetic sensors can have a reciprocal influence and malfunctions occur. Troubles of functioning can occur. A magnetisable steel sheet can help, placed between the cylinders or magnetic sensors as a shield.

Demands on voltage supply

Frequently a simple two-phase bridge connection is used, as it is often used for contactor or relay control. Such a connection is not suitable for voltage supply of position monitorings! In figure 1 the progression of the output voltage of such a connection is represented over time. You can recognise that the voltage obtains temporarily the zero point. An electronic system could not function correctly in this case. In addition, you see that the peak values of the voltage exceed considerably their mean value. The electronic can be destroyed by too high

The electronic can be destroyed by too high peak spikes.

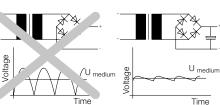
Usually voltmeters or multimeters measure the mean value of the voltage. The peak value is increased approx. by factor 1.5. A measure of quality of a d.c. voltage is the residual ripple. An ideal d.c.voltage, as it is generated by a battery, has a residual ripple of 0%, the above described two-phase bridge connection obtains a residual ripple of 48%. 10% is admissible!

The residual ripple can be improved by topping a sufficiently-designed capacitor. This is called "smoothing" of the voltage. But thereby the mean value of the d.c. voltage is increased. Therefore it is recommended to provide a "smoothed" voltage supply when planning an installation.

Description/Function

Function

Electronic magnetic sensors allow position monitoring of the pistons of cylinders with non-magnetisable housings (aluminium or bronze). An annular permanent magnet is fixed to the piston, and its magnetic field is detected by an electronic magnetic sensor.


The magnetic sensors are fixed outside in the lengthwise slots of the cylinder body. The switching points are adjustable by displacement of the magnetic sensors in the lengthwise slots of the body.

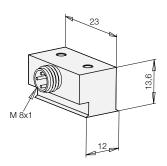
Spikes

A danger for position monitorings are elements with high inductivity, which are operated with the same voltage supply as the position monitorings. Such elements, as e.g. solenoid valves, contactors and motors can generate high and high-energy peak spikes, which are transmitted by the voltage supply to the position monitorings.

Therefore critical elements have to be screened. For this purpose recovery diodes or RCnetworks are indicated, which are mounted directly at the sources of interference. An alternative solution is the separated voltage supply for position monitorings and critical consumers.

Incorrect:

Correct:


Figure 1: Generation of supply voltage

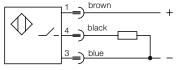
Application examples

Dimensions Technical data • Accessories

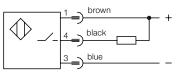
Dimensions

Electric connection

Electric connection is made as per traditional inductive proximity switches.

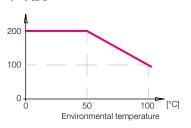

Up to four magnetic sensors can be connected in series

Switching hysteresis of approx. 3 mm and path


This has to be considered already when adjusting the magnetic sensors. For static pistons, the magnetic sensor must always be pushed forward to the piston from the opposite direction

Magnetic sensors with short path are available on request.

Connecting scheme


pnp = plus switching

npn = minus switching

Temperature curve

max. load current [mA] I_{LOAD}

Maximum operating temperature

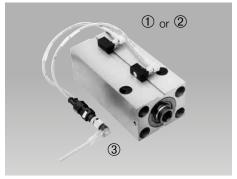
- Magnetic sensor + 100 °C
- Permanent magnet: +100 °C
- Connecting cable with right angle plug: +90 °C

Magnetic sensors for an operating temperature up to 120°C are available on request.

Technical data

Body material	aluminium black a	nodised			
Voltage	10 – 30 V DC				
Residual ripple	max. 10%				
Current load I _{LOAD}	200 mA – up to 50 °C 150 mA – at 75 °C 100 mA – at 100 °C				
Current consumption	< 15 mA				
Voltage drop (max. load)	< 2 V				
Protected against short circuits	yes				
Protection against reverse battery	installed				
Switching frequency	1 kHz				
Switching hysteresis	3 mm				
Protection as per DIN 40050	IP 67				
Environmental temperature	-25 °C up to +100	O°C			
Port	M8 plug				
LED	no				
Output (interlock)	pnp	npn			
Part no. (1 off)	3829234	3829240			

Connecting cable


With angle plug M8

Technical data

Part no.	38:	29099	3829124
Output (interlock)		pnp	npn
Cable, length of cable			PUR, 5 m
LED: Voltage Function display	′		(green) (yellow)
Environmental temperature		– 25°(C to +90°C
Protection as per DIN 40050			IP 67
Voltage		10	- 30 V DC
Port			M8 plug, knee-type

Y-distributor pnp

The Y-distributor allows connection of two proximity switches or magnetic sensors at a four-pole plug-type connector M12. For each cylinder only one cable has to be placed.

For easier adjustment of the switching points the right angle plugs M8 are equipped with two LEDs each, which indicate the operating voltage and the switching position. Plug-type connector M12 is equipped with three LEDs.

① Y-distributor with cable 0.3 m with 2 right angle plugs M8 with 2 LED each and 1 plug-type connector M12 with 3 LED

Part no. 3829 118

② Y-distributor with cable 0.3 m with 2 straight plugs M8 without LED and 1 plug-type connector M12 with 3 LED

Part no. 3829 125

③ Right angle plug M12 with 3 LED 5 m 4-wire cable for common connection of the Y-distributor

Part no. 3829 106

With pnp angle plug M12

Right angle plug M12 with 2 LED
 3 m 3-wire cable for common connection
 of the Y-distributor

Part no. 3829049

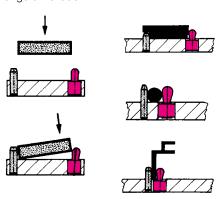
② Straight plug M12 without LED 5 m 3-wire cable for common connection of the Y-distributor

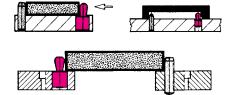
Part no. 3829078

Technical data

Voltage	10 – 30 V DC
Protection as per DIN 40050	IP 67
Environmental temperature	– 25°C to +90°C
LED: Voltage Function display	(green) (yellow)

G 2.140 / 1-20 US - page 2


Actual issue see wh.roemheld-usa.com/G2140



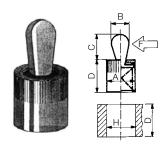
Spring Clamping Element 10 - 300 N, with and without sealing

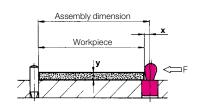
These spring clamping elements are designed for quicker, safer and more economic workpiece positioning and clamping within clamping range of 10-300 N.

Function

The clamping force is generated by displacement of a spring-loaded pin. Clamping force and clamping path are indicated in the chart.

Materials

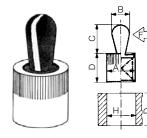

Body: aluminium

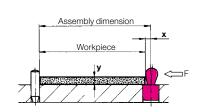

Pressure pin: steel case hardened and

galvanised

With sealing

Elements of range 3112 1XX are equipped with additional sealing against swarf and coolants and are particularly suitable for its application in the metal cutting machining.

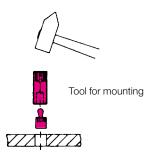




Α	В	C -1	D	Н	F [N]	y=1.0 X	y=2.0 X	y=3.0 X	y=4.5 X	y=6.0 X	y=8.0 X	y≥10.0 X	Weight [g]	Part no.
6	3	4	7	6H11	10 20 40	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1 1 1	3112120 3112121 3112122
10	5	6	12	10H11	20 50 100		1.5	1.7	1.7	1.7	1.7	1.7	2 2 2	3112123 3112124 3112125
10	6	10	12	10H11	40 75 150				1.7	1.9	1.9	1.9	2 2 2	3112126 3112127 3112128
12	8	13	14	12H11	50 100 200					2.4	2.6	2.6	8 8 8	3112129 3112130 3112131
16	10	16	18	16H11	100 200 300						3.1	3.4	16 16 16	3112132 3112133 3112134

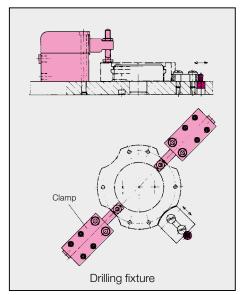
Without sealing

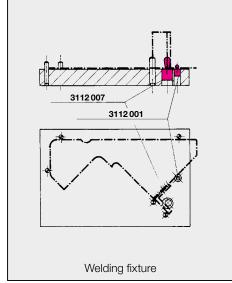
Elements of range 31222XX without the extra sealing are suitable for assembly and welding.

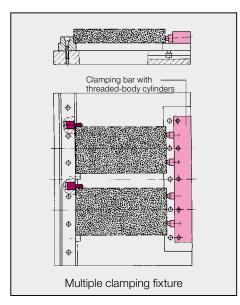

А	В	C -1	D	Н	F [N]	y=1.0 X	y=2.0 X	y=3.0 X	y=4.5 X	y=6.0 X	y=8.0 X	y≥10.0 X	Weight [g]	Part no.
6	3	5.0	7	6H11	10 20 40	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1 1 1	3112000 3112001 3112002
10	5	7.7	11	10H11	20 50 100		1.5	1.7	1.7	1.7	1.7	1.7	2 2 2	3112003 3112004 3112005
10	6	11.6	11	10H11	40 75 150				1.7	1.9	1.9	1.9	2 2 2	3112006 3112007 3112008
12	8	15.1	13	12H11	50 100 200					2.4	2.6	2.6	8 8 8	3112009 3112010 3112011
16	10	18.2	17	16H11	100 200 300						3.1	3.4	16 16 16	3112012 3112013 3112014

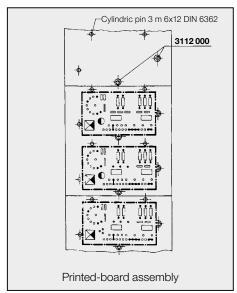
Mounting • Application examples

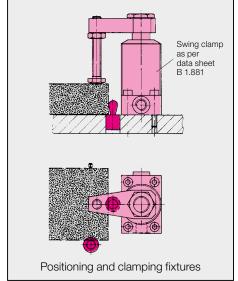
Mounting

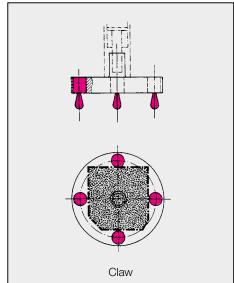

Tools as per chart opposite are available for 5 sizes as per dimension B as per chart page 1. mounting. Insertion into bore hole can be effected by hammer or press (see fig.).


Tools for mounting




	Part no.
3	3112140
5	3112141
6	3112142
8	3112143
10	3112144


Application examples



INNOVATIVE SOLUTIONS AND PIONEERING TRENDS

Innovative and smart clamping technology solutions for workpieces as well as for tools in forming technology and plastics processing form the core of the continuously growing portfolio. It is supplemented by components and systems for assembly and handling technology, drive technology and automation, as well as locking systems for wind turbine rotors.

WORKHOLDING

Elements and systems for workpiece clamping, hydraulic components and hydraulic cylinders

wh.roemheld-usa.com

QUICK DIE CHANGE

Elements and systems for clamping and changing tools and moulds on presses, punches and injection moulding machines

qdc.roemheld-usa.com

ASSEMBLY & HANDLING

Devices and equipment for turning, lifting, tilting and moving heavy workpieces as well as press-fit devices, linear drives and assembly devices for bicycles

ah.roemheld-usa.com

Römheld GmbH

Friedrichshütte Römheldstraße 1-5 35321 Laubach Germany

Phone +49 6405 89-0 info@roemheld.de www.roemheld.com

ROEMHELD North America

927 Horan Dr. Fenton MO 63026 **USA**

Phone 1-800-827-2526 or (636) 386-8022 info@roemheld-usa.com www.us.roemheld.com

